From Poses to Identity: Training-Free Person Re-Identification via Feature Centralization
- URL: http://arxiv.org/abs/2503.00938v2
- Date: Tue, 11 Mar 2025 07:09:17 GMT
- Title: From Poses to Identity: Training-Free Person Re-Identification via Feature Centralization
- Authors: Chao Yuan, Guiwei Zhang, Changxiao Ma, Tianyi Zhang, Guanglin Niu,
- Abstract summary: Person re-identification (ReID) aims to extract accurate identity representation features.<n>We propose a Training-Free Feature Centralization ReID framework (Pose2ID) to reduce individual noise.<n>Our method sets new state-of-the-art results across standard, cross-modality, and occluded ReID tasks.
- Score: 9.614305363044737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Person re-identification (ReID) aims to extract accurate identity representation features. However, during feature extraction, individual samples are inevitably affected by noise (background, occlusions, and model limitations). Considering that features from the same identity follow a normal distribution around identity centers after training, we propose a Training-Free Feature Centralization ReID framework (Pose2ID) by aggregating the same identity features to reduce individual noise and enhance the stability of identity representation, which preserves the feature's original distribution for following strategies such as re-ranking. Specifically, to obtain samples of the same identity, we introduce two components: Identity-Guided Pedestrian Generation: by leveraging identity features to guide the generation process, we obtain high-quality images with diverse poses, ensuring identity consistency even in complex scenarios such as infrared, and occlusion. Neighbor Feature Centralization: it explores each sample's potential positive samples from its neighborhood. Experiments demonstrate that our generative model exhibits strong generalization capabilities and maintains high identity consistency. With the Feature Centralization framework, we achieve impressive performance even with an ImageNet pre-trained model without ReID training, reaching mAP/Rank-1 of 52.81/78.92 on Market1501. Moreover, our method sets new state-of-the-art results across standard, cross-modality, and occluded ReID tasks, showcasing strong adaptability.
Related papers
- Exploring Stronger Transformer Representation Learning for Occluded Person Re-Identification [2.552131151698595]
We proposed a novel self-supervision and supervision combining transformer-based person re-identification framework, namely SSSC-TransReID.
We designed a self-supervised contrastive learning branch, which can enhance the feature representation for person re-identification without negative samples or additional pre-training.
Our proposed model obtains superior Re-ID performance consistently and outperforms the state-of-the-art ReID methods by large margins on the mean average accuracy (mAP) and Rank-1 accuracy.
arXiv Detail & Related papers (2024-10-21T03:17:25Z) - ID$^3$: Identity-Preserving-yet-Diversified Diffusion Models for Synthetic Face Recognition [60.15830516741776]
Synthetic face recognition (SFR) aims to generate datasets that mimic the distribution of real face data.
We introduce a diffusion-fueled SFR model termed $textID3$.
$textID3$ employs an ID-preserving loss to generate diverse yet identity-consistent facial appearances.
arXiv Detail & Related papers (2024-09-26T06:46:40Z) - Disentangled Representations for Short-Term and Long-Term Person Re-Identification [33.76874948187976]
We propose a new generative adversarial network, dubbed identity shuffle GAN (IS-GAN)
It disentangles identity-related and unrelated features from person images through an identity-shuffling technique.
Experimental results validate the effectiveness of IS-GAN, showing state-of-the-art performance on standard reID benchmarks.
arXiv Detail & Related papers (2024-09-09T02:09:49Z) - Unity in Diversity: Multi-expert Knowledge Confrontation and Collaboration for Generalizable Vehicle Re-identification [60.20318058777603]
Generalizable vehicle re-identification (ReID) seeks to develop models that can adapt to unknown target domains without the need for fine-tuning or retraining.
Previous works have mainly focused on extracting domain-invariant features by aligning data distributions between source domains.
We propose a two-stage Multi-expert Knowledge Confrontation and Collaboration (MiKeCoCo) method to solve this unique problem.
arXiv Detail & Related papers (2024-07-10T04:06:39Z) - ID-Aligner: Enhancing Identity-Preserving Text-to-Image Generation with Reward Feedback Learning [57.91881829308395]
Identity-preserving text-to-image generation (ID-T2I) has received significant attention due to its wide range of application scenarios like AI portrait and advertising.
We present textbfID-Aligner, a general feedback learning framework to enhance ID-T2I performance.
arXiv Detail & Related papers (2024-04-23T18:41:56Z) - Robust Ensemble Person Re-Identification via Orthogonal Fusion with Occlusion Handling [4.431087385310259]
Occlusion remains one of the major challenges in person reidentification (ReID)
We propose a deep ensemble model that harnesses both CNN and Transformer architectures to generate robust feature representations.
arXiv Detail & Related papers (2024-03-29T18:38:59Z) - Infinite-ID: Identity-preserved Personalization via ID-semantics Decoupling Paradigm [31.06269858216316]
We propose Infinite-ID, an ID-semantics decoupling paradigm for identity-preserved personalization.
We introduce an identity-enhanced training, incorporating an additional image cross-attention module to capture sufficient ID information.
We also introduce a feature interaction mechanism that combines a mixed attention module with an AdaIN-mean operation to seamlessly merge the two streams.
arXiv Detail & Related papers (2024-03-18T13:39:53Z) - X-ReID: Cross-Instance Transformer for Identity-Level Person
Re-Identification [53.047542904329866]
Cross Intra-Identity Instances module (IntraX) fuses different intra-identity instances to transfer Identity-Level knowledge.
Cross Inter-Identity Instances module (InterX) involves hard positive and hard negative instances to improve the attention response to the same identity.
arXiv Detail & Related papers (2023-02-04T03:16:18Z) - FaceDancer: Pose- and Occlusion-Aware High Fidelity Face Swapping [62.38898610210771]
We present a new single-stage method for subject face swapping and identity transfer, named FaceDancer.
We have two major contributions: Adaptive Feature Fusion Attention (AFFA) and Interpreted Feature Similarity Regularization (IFSR)
arXiv Detail & Related papers (2022-10-19T11:31:38Z) - Pose Invariant Person Re-Identification using Robust Pose-transformation
GAN [11.338815177557645]
Person re-identification (re-ID) aims to retrieve a person's images from an image gallery, given a single instance of the person of interest.
Despite several advancements, learning discriminative identity-sensitive and viewpoint invariant features for robust Person Re-identification is a major challenge owing to large pose variation of humans.
This paper proposes a re-ID pipeline that utilizes the image generation capability of Generative Adversarial Networks combined with pose regression and feature fusion to achieve pose invariant feature learning.
arXiv Detail & Related papers (2021-04-11T15:47:03Z) - Cross-Resolution Adversarial Dual Network for Person Re-Identification
and Beyond [59.149653740463435]
Person re-identification (re-ID) aims at matching images of the same person across camera views.
Due to varying distances between cameras and persons of interest, resolution mismatch can be expected.
We propose a novel generative adversarial network to address cross-resolution person re-ID.
arXiv Detail & Related papers (2020-02-19T07:21:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.