Can AI Model the Complexities of Human Moral Decision-Making? A Qualitative Study of Kidney Allocation Decisions
- URL: http://arxiv.org/abs/2503.00940v1
- Date: Sun, 02 Mar 2025 15:42:17 GMT
- Title: Can AI Model the Complexities of Human Moral Decision-Making? A Qualitative Study of Kidney Allocation Decisions
- Authors: Vijay Keswani, Vincent Conitzer, Walter Sinnott-Armstrong, Breanna K. Nguyen, Hoda Heidari, Jana Schaich Borg,
- Abstract summary: A growing body of work in Ethical AI attempts to capture human moral judgments through simple computational models.<n>We conducted twenty interviews where participants explained their rationale for their judgments about who should receive a kidney.<n>We observe participants: (a) value patients' morally-relevant attributes to different degrees; (b) use diverse decision-making processes, citings to reduce decision complexity; (c) can change their opinions; and (e) express enthusiasm and concern regarding AI assisting humans in kidney allocation decisions.
- Score: 31.11473190744529
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A growing body of work in Ethical AI attempts to capture human moral judgments through simple computational models. The key question we address in this work is whether such simple AI models capture {the critical} nuances of moral decision-making by focusing on the use case of kidney allocation. We conducted twenty interviews where participants explained their rationale for their judgments about who should receive a kidney. We observe participants: (a) value patients' morally-relevant attributes to different degrees; (b) use diverse decision-making processes, citing heuristics to reduce decision complexity; (c) can change their opinions; (d) sometimes lack confidence in their decisions (e.g., due to incomplete information); and (e) express enthusiasm and concern regarding AI assisting humans in kidney allocation decisions. Based on these findings, we discuss challenges of computationally modeling moral judgments {as a stand-in for human input}, highlight drawbacks of current approaches, and suggest future directions to address these issues.
Related papers
- From Text to Trust: Empowering AI-assisted Decision Making with Adaptive LLM-powered Analysis [20.49579297622137]
Large language models (LLMs) have exceptional conversational and analytical capabilities.<n>LLMs provide natural-language-based analysis of AI's decision recommendation.<n>We show that presenting LLM-powered analysis of each task feature, either sequentially or concurrently, does not significantly improve people's AI-assisted decision performance.
arXiv Detail & Related papers (2025-02-17T15:32:54Z) - Utilizing Human Behavior Modeling to Manipulate Explanations in AI-Assisted Decision Making: The Good, the Bad, and the Scary [19.884253335528317]
Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process.
To fully unlock the potential of AI-assisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions.
Providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice.
arXiv Detail & Related papers (2024-11-02T18:33:28Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
In AI-assisted decision-making, humans often passively review AI's suggestion and decide whether to accept or reject it as a whole.
We propose Human-AI Deliberation, a novel framework to promote human reflection and discussion on conflicting human-AI opinions in decision-making.
Based on theories in human deliberation, this framework engages humans and AI in dimension-level opinion elicitation, deliberative discussion, and decision updates.
arXiv Detail & Related papers (2024-03-25T14:34:06Z) - Decision Theoretic Foundations for Experiments Evaluating Human Decisions [18.27590643693167]
We argue that to attribute loss in human performance to forms of bias, an experiment must provide participants with the information that a rational agent would need to identify the utility-maximizing decision.
As a demonstration, we evaluate the extent to which recent evaluations of decision-making from the literature on AI-assisted decisions achieve these criteria.
arXiv Detail & Related papers (2024-01-25T16:21:37Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - Indecision Modeling [50.00689136829134]
It is important that AI systems act in ways which align with human values.
People are often indecisive, and especially so when their decision has moral implications.
arXiv Detail & Related papers (2020-12-15T18:32:37Z) - Artificial Artificial Intelligence: Measuring Influence of AI
'Assessments' on Moral Decision-Making [48.66982301902923]
We examined the effect of feedback from false AI on moral decision-making about donor kidney allocation.
We found some evidence that judgments about whether a patient should receive a kidney can be influenced by feedback about participants' own decision-making perceived to be given by AI.
arXiv Detail & Related papers (2020-01-13T14:15:18Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
We study whether features that reveal case-specific model information can calibrate trust and improve the joint performance of the human and AI.
We show that confidence score can help calibrate people's trust in an AI model, but trust calibration alone is not sufficient to improve AI-assisted decision making.
arXiv Detail & Related papers (2020-01-07T15:33:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.