MedUnifier: Unifying Vision-and-Language Pre-training on Medical Data with Vision Generation Task using Discrete Visual Representations
- URL: http://arxiv.org/abs/2503.01019v3
- Date: Sun, 20 Apr 2025 21:18:03 GMT
- Title: MedUnifier: Unifying Vision-and-Language Pre-training on Medical Data with Vision Generation Task using Discrete Visual Representations
- Authors: Ziyang Zhang, Yang Yu, Yucheng Chen, Xulei Yang, Si Yong Yeo,
- Abstract summary: We propose MedUnifier, a unified Vision-Language Pre-Training framework tailored for medical data.<n>MedUnifier seamlessly integrates text-grounded image generation capabilities with multi-modal learning strategies.<n>Our approach employs visual vector quantization, which not only facilitates a more cohesive learning strategy for cross-modal understanding but also enhances multi-modal generation quality.
- Score: 13.991376926757036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite significant progress in Vision-Language Pre-training (VLP), current approaches predominantly emphasize feature extraction and cross-modal comprehension, with limited attention to generating or transforming visual content. This gap hinders the model's ability to synthesize coherent and novel visual representations from textual prompts, thereby reducing the effectiveness of multi-modal learning. In this work, we propose MedUnifier, a unified VLP framework tailored for medical data. MedUnifier seamlessly integrates text-grounded image generation capabilities with multi-modal learning strategies, including image-text contrastive alignment, image-text matching and image-grounded text generation. Unlike traditional methods that reply on continuous visual representations, our approach employs visual vector quantization, which not only facilitates a more cohesive learning strategy for cross-modal understanding but also enhances multi-modal generation quality by effectively leveraging discrete representations. Our framework's effectiveness is evidenced by the experiments on established benchmarks, including uni-modal tasks (supervised fine-tuning), cross-modal tasks (image-text retrieval and zero-shot image classification), and multi-modal tasks (medical report generation, image synthesis), where it achieves state-of-the-art performance across various tasks. MedUnifier also offers a highly adaptable tool for a wide range of language and vision tasks in healthcare, marking advancement toward the development of a generalizable AI model for medical applications.
Related papers
- Hierarchical Text-to-Vision Self Supervised Alignment for Improved Histopathology Representation Learning [64.1316997189396]
We present a novel language-tied self-supervised learning framework, Hierarchical Language-tied Self-Supervision (HLSS) for histopathology images.
Our resulting model achieves state-of-the-art performance on two medical imaging benchmarks, OpenSRH and TCGA datasets.
arXiv Detail & Related papers (2024-03-21T17:58:56Z) - ECAMP: Entity-centered Context-aware Medical Vision Language Pre-training [21.315060059765894]
We propose a novel framework for entity-centered medical vision-language pre-training.
We distill entity-centered context from medical reports to gain more effective supervision from the text modality.
Our proposed multi-scale context fusion design also improves the semantic integration of both coarse and fine-level image representations.
arXiv Detail & Related papers (2023-12-20T11:00:54Z) - Multi-Modal Representation Learning with Text-Driven Soft Masks [48.19806080407593]
We propose a visual-linguistic representation learning approach within a self-supervised learning framework.
We generate diverse features for the image-text matching (ITM) task via soft-masking the regions in an image.
We identify the relevant regions to each word by computing the word-conditional visual attention using multi-modal encoder.
arXiv Detail & Related papers (2023-04-03T05:07:49Z) - Towards Unifying Medical Vision-and-Language Pre-training via Soft
Prompts [63.84720380390935]
There exist two typical types, textiti.e., the fusion-encoder type and the dual-encoder type, depending on whether a heavy fusion module is used.
We propose an effective yet straightforward scheme named PTUnifier to unify the two types.
We first unify the input format by introducing visual and textual prompts, which serve as a feature bank that stores the most representative images/texts.
arXiv Detail & Related papers (2023-02-17T15:43:42Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities.
We explicitly account for prior images and reports when available during both training and fine-tuning.
Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model.
arXiv Detail & Related papers (2023-01-11T16:35:33Z) - MAMO: Masked Multimodal Modeling for Fine-Grained Vision-Language
Representation Learning [23.45678557013005]
We propose a jointly masked multimodal modeling method to learn fine-grained multimodal representations.
Our method performs joint masking on image-text input and integrates both implicit and explicit targets for the masked signals to recover.
Our model achieves state-of-the-art performance on various downstream vision-language tasks, including image-text retrieval, visual question answering, visual reasoning, and weakly-supervised visual grounding.
arXiv Detail & Related papers (2022-10-09T06:31:15Z) - Multi-Modal Masked Autoencoders for Medical Vision-and-Language
Pre-Training [62.215025958347105]
We propose a self-supervised learning paradigm with multi-modal masked autoencoders.
We learn cross-modal domain knowledge by reconstructing missing pixels and tokens from randomly masked images and texts.
arXiv Detail & Related papers (2022-09-15T07:26:43Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUG is a new vision-language foundation model for both cross-modal understanding and generation.
It achieves state-of-the-art results on a wide range of vision-language downstream tasks, such as image captioning, image-text retrieval, visual grounding and visual question answering.
arXiv Detail & Related papers (2022-05-24T11:52:06Z) - Multi-modal Understanding and Generation for Medical Images and Text via
Vision-Language Pre-Training [5.119201893752376]
We propose Medical Vision Language Learner (MedViLL) which adopts a Transformer-based architecture combined with a novel multimodal attention masking scheme.
We empirically demonstrate the superior downstream task performance of MedViLL against various baselines including task-specific architectures.
arXiv Detail & Related papers (2021-05-24T15:14:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.