SolBench: A Dataset and Benchmark for Evaluating Functional Correctness in Solidity Code Completion and Repair
- URL: http://arxiv.org/abs/2503.01098v1
- Date: Mon, 03 Mar 2025 01:55:20 GMT
- Title: SolBench: A Dataset and Benchmark for Evaluating Functional Correctness in Solidity Code Completion and Repair
- Authors: Zaoyu Chen, Haoran Qin, Nuo Chen, Xiangyu Zhao, Lei Xue, Xiapu Luo, Xiao-Ming Wu,
- Abstract summary: We introduce SolBench, a benchmark for evaluating the functional correctness of Solidity smart contracts generated by code completion models.<n>We propose a Retrieval-Augmented Code Repair framework to verify functional correctness of smart contracts.<n>Results show that code repair and retrieval techniques effectively enhance the correctness of smart contract completion while reducing computational costs.
- Score: 51.0686873716938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smart contracts are crucial programs on blockchains, and their immutability post-deployment makes functional correctness vital. Despite progress in code completion models, benchmarks for Solidity, the primary smart contract language, are lacking. Existing metrics like BLEU do not adequately assess the functional correctness of generated smart contracts. To fill this gap, we introduce SolBench, a benchmark for evaluating the functional correctness of Solidity smart contracts generated by code completion models. SolBench includes 4,178 functions from 1,155 Ethereum-deployed contracts. Testing advanced models revealed challenges in generating correct code without context, as Solidity functions rely on context-defined variables and interfaces. To address this, we propose a Retrieval-Augmented Code Repair framework. In this framework, an executor verifies functional correctness, and if necessary, an LLM repairs the code using retrieved snippets informed by executor traces. We conduct a comprehensive evaluation of both closed-source and open-source LLMs across various model sizes and series to assess their performance in smart contract completion. The results show that code repair and retrieval techniques effectively enhance the correctness of smart contract completion while reducing computational costs.
Related papers
- FEA-Bench: A Benchmark for Evaluating Repository-Level Code Generation for Feature Implementation [26.14778133391999]
FEA-Bench is a benchmark designed to assess the ability of large language models to perform incremental development within code repositories.
We collect pull requests from 83 GitHub repositories and use rule-based and intent-based filtering to construct task instances focused on new feature development.
arXiv Detail & Related papers (2025-03-09T16:11:57Z) - Learning to Solve and Verify: A Self-Play Framework for Code and Test Generation [69.62857948698436]
Recent advances in large language models (LLMs) have improved their performance on coding benchmarks.<n>However, improvement is plateauing due to the exhaustion of readily available high-quality data.<n>We propose Sol-Ver, a self-play solver-verifier framework that jointly improves a single model's code and test generation capacity.
arXiv Detail & Related papers (2025-02-20T18:32:19Z) - ToolCoder: A Systematic Code-Empowered Tool Learning Framework for Large Language Models [49.04652315815501]
Tool learning has emerged as a crucial capability for large language models (LLMs) to solve complex real-world tasks through interaction with external tools.
We propose ToolCoder, a novel framework that reformulates tool learning as a code generation task.
arXiv Detail & Related papers (2025-02-17T03:42:28Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
We present the Code-Development Benchmark (Codev-Bench), a fine-grained, real-world, repository-level, and developer-centric evaluation framework.
Codev-Agent is an agent-based system that automates repository crawling, constructs execution environments, extracts dynamic calling chains from existing unit tests, and generates new test samples to avoid data leakage.
arXiv Detail & Related papers (2024-10-02T09:11:10Z) - RepoMasterEval: Evaluating Code Completion via Real-World Repositories [12.176098357240095]
RepoMasterEval is a novel benchmark for evaluating code completion models constructed from real-world Python and TypeScript repositories.
To improve test accuracy of model generated code, we employ mutation testing to measure the effectiveness of the test cases.
Our empirical evaluation on 6 state-of-the-art models shows that test argumentation is critical in improving the accuracy of the benchmark.
arXiv Detail & Related papers (2024-08-07T03:06:57Z) - On the Impacts of Contexts on Repository-Level Code Generation [5.641402231731082]
We present RepoExec, a novel benchmark designed to evaluate repository-level code generation.<n>We focus on three key aspects: executability, functional correctness through comprehensive test case generation, and accurate utilization of cross-file contexts.
arXiv Detail & Related papers (2024-06-17T10:45:22Z) - On the Limitations of Embedding Based Methods for Measuring Functional Correctness for Code Generation [4.065344017083881]
We analyze the ability of embedding-based metrics like CodeBERTScore to measure functional correctness and other helpful constructs like editing effort.
Our results show that while they have a weak correlation with functional correctness (0.16), they are strongly correlated (0.72) with editing effort.
arXiv Detail & Related papers (2024-04-26T15:54:39Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.