ViKANformer: Embedding Kolmogorov Arnold Networks in Vision Transformers for Pattern-Based Learning
- URL: http://arxiv.org/abs/2503.01124v1
- Date: Mon, 03 Mar 2025 03:10:26 GMT
- Title: ViKANformer: Embedding Kolmogorov Arnold Networks in Vision Transformers for Pattern-Based Learning
- Authors: Shreyas S, Akshath M,
- Abstract summary: Vision Transformers (ViTs) have significantly advanced image classification by applying self-attention on patch embeddings.<n>In this paper, we propose ViKANformer, a Vision Transformer where we replace the sub-layers with Kolmogorov-Arnold Network (KAN) expansions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision Transformers (ViTs) have significantly advanced image classification by applying self-attention on patch embeddings. However, the standard MLP blocks in each Transformer layer may not capture complex nonlinear dependencies optimally. In this paper, we propose ViKANformer, a Vision Transformer where we replace the MLP sub-layers with Kolmogorov-Arnold Network (KAN) expansions, including Vanilla KAN, Efficient-KAN, Fast-KAN, SineKAN, and FourierKAN, while also examining a Flash Attention variant. By leveraging the Kolmogorov-Arnold theorem, which guarantees that multivariate continuous functions can be expressed via sums of univariate continuous functions, we aim to boost representational power. Experimental results on MNIST demonstrate that SineKAN, Fast-KAN, and a well-tuned Vanilla KAN can achieve over 97% accuracy, albeit with increased training overhead. This trade-off highlights that KAN expansions may be beneficial if computational cost is acceptable. We detail the expansions, present training/test accuracy and F1/ROC metrics, and provide pseudocode and hyperparameters for reproducibility. Finally, we compare ViKANformer to a simple MLP and a small CNN baseline on MNIST, illustrating the efficiency of Transformer-based methods even on a small-scale dataset.
Related papers
- Kolmogorov-Arnold Transformer [72.88137795439407]
We introduce the Kolmogorov-Arnold Transformer (KAT), a novel architecture that replaces layers with Kolmogorov-Arnold Network (KAN) layers.
We identify three key challenges: (C1) Base function, (C2) Inefficiency, and (C3) Weight.
With these designs, KAT outperforms traditional-based transformers.
arXiv Detail & Related papers (2024-09-16T17:54:51Z) - CTRL-F: Pairing Convolution with Transformer for Image Classification via Multi-Level Feature Cross-Attention and Representation Learning Fusion [0.0]
We present a novel lightweight hybrid network that pairs Convolution with Transformers.
We fuse the local responses acquired from the convolution path with the global responses acquired from the MFCA module.
Experiments demonstrate that our variants achieve state-of-the-art performance, whether trained from scratch on large data or even with low-data regime.
arXiv Detail & Related papers (2024-07-09T08:47:13Z) - SCHEME: Scalable Channel Mixer for Vision Transformers [52.605868919281086]
Vision Transformers have achieved impressive performance in many vision tasks.
Much less research has been devoted to the channel mixer or feature mixing block (FFN or)
We show that the dense connections can be replaced with a diagonal block structure that supports larger expansion ratios.
arXiv Detail & Related papers (2023-12-01T08:22:34Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks.
Transformers that need to incorporate contextual information to extract features dynamically are neglected.
We propose a lightweight Cross-receptive Focused Inference Network (CFIN) that consists of a cascade of CT Blocks mixed with CNN and Transformer.
arXiv Detail & Related papers (2022-07-06T16:32:29Z) - Your Transformer May Not be as Powerful as You Expect [88.11364619182773]
We mathematically analyze the power of RPE-based Transformers regarding whether the model is capable of approximating any continuous sequence-to-sequence functions.
We present a negative result by showing there exist continuous sequence-to-sequence functions that RPE-based Transformers cannot approximate no matter how deep and wide the neural network is.
We develop a novel attention module, called Universal RPE-based (URPE) Attention, which satisfies the conditions.
arXiv Detail & Related papers (2022-05-26T14:51:30Z) - Adaptive Split-Fusion Transformer [90.04885335911729]
We propose an Adaptive Split-Fusion Transformer (ASF-former) to treat convolutional and attention branches differently with adaptive weights.
Experiments on standard benchmarks, such as ImageNet-1K, show that our ASF-former outperforms its CNN, transformer counterparts, and hybrid pilots in terms of accuracy.
arXiv Detail & Related papers (2022-04-26T10:00:28Z) - Vision Transformer with Progressive Sampling [73.60630716500154]
We propose an iterative and progressive sampling strategy to locate discriminative regions.
When trained from scratch on ImageNet, PS-ViT performs 3.8% higher than the vanilla ViT in terms of top-1 accuracy.
arXiv Detail & Related papers (2021-08-03T18:04:31Z) - Dynamic Clone Transformer for Efficient Convolutional Neural Netwoks [0.0]
We introduce a novel concept termed multi-path fully connected pattern (MPFC) to rethink the interdependencies of topology pattern, accuracy and efficiency for ConvNets.
Inspired by MPFC, we propose a dual-branch module named dynamic clone transformer (DCT) where one branch generates multiple replicas from inputs and another branch reforms those clones through a series of difference vectors conditional on inputs itself to produce more variants.
arXiv Detail & Related papers (2021-06-12T13:42:28Z) - Incorporating Convolution Designs into Visual Transformers [24.562955955312187]
We propose a new textbfConvolution-enhanced image Transformer (CeiT) which combines the advantages of CNNs in extracting low-level features, strengthening locality, and the advantages of Transformers in establishing long-range dependencies.
Experimental results on ImageNet and seven downstream tasks show the effectiveness and generalization ability of CeiT compared with previous Transformers and state-of-the-art CNNs, without requiring a large amount of training data and extra CNN teachers.
arXiv Detail & Related papers (2021-03-22T13:16:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.