Learning Covariance-Based Multi-Scale Representation of Neuroimaging Measures for Alzheimer Classification
- URL: http://arxiv.org/abs/2503.01232v1
- Date: Mon, 03 Mar 2025 06:55:35 GMT
- Title: Learning Covariance-Based Multi-Scale Representation of Neuroimaging Measures for Alzheimer Classification
- Authors: Seunghun Baek, Injun Choi, Mustafa Dere, Minjeong Kim, Guorong Wu, Won Hwa Kim,
- Abstract summary: We present a framework capable of deriving an efficient high-dimensional space with reasonable increase in model size.<n>Experiments on neuroimaging measures from Alzheimer's Disease Neuroimaging Initiative (ADNI) study show that our model performs better.<n>The trained model is made interpretable using gradient information over the multi-scale transform to delineate personalized AD-specific regions in the brain.
- Score: 5.427921447614832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stacking excessive layers in DNN results in highly underdetermined system when training samples are limited, which is very common in medical applications. In this regard, we present a framework capable of deriving an efficient high-dimensional space with reasonable increase in model size. This is done by utilizing a transform (i.e., convolution) that leverages scale-space theory with covariance structure. The overall model trains on this transform together with a downstream classifier (i.e., Fully Connected layer) to capture the optimal multi-scale representation of the original data which corresponds to task-specific components in a dual space. Experiments on neuroimaging measures from Alzheimer's Disease Neuroimaging Initiative (ADNI) study show that our model performs better and converges faster than conventional models even when the model size is significantly reduced. The trained model is made interpretable using gradient information over the multi-scale transform to delineate personalized AD-specific regions in the brain.
Related papers
- The Impact of Model Zoo Size and Composition on Weight Space Learning [8.11780615053558]
Re-using trained neural network models is a common strategy to reduce training cost and transfer knowledge.
Weight space learning is a promising new field to re-use populations of pre-trained models for future tasks.
We propose a modification to a common weight space learning method to accommodate training on heterogeneous populations of models.
arXiv Detail & Related papers (2025-04-14T11:54:06Z) - SurgeryV2: Bridging the Gap Between Model Merging and Multi-Task Learning with Deep Representation Surgery [54.866490321241905]
Model merging-based multitask learning (MTL) offers a promising approach for performing MTL by merging multiple expert models.
In this paper, we examine the merged model's representation distribution and uncover a critical issue of "representation bias"
This bias arises from a significant distribution gap between the representations of the merged and expert models, leading to the suboptimal performance of the merged MTL model.
arXiv Detail & Related papers (2024-10-18T11:49:40Z) - AD-Lite Net: A Lightweight and Concatenated CNN Model for Alzheimer's Detection from MRI Images [1.8749305679160366]
Alzheimer's Disease (AD) is a non-curable progressive neurodegenerative disorder that affects the human brain, leading to a decline in memory, cognitive abilities, and eventually, the ability to carry out daily tasks.
There is a need for an automatic Computer Assisted Diagnosis (CAD) system, which can detect Alzheimer's disease at early stages with higher accuracy.
We have proposed a novel AD-Lite Net model (trained from scratch), that could alleviate the aforementioned problem.
arXiv Detail & Related papers (2024-09-12T16:00:51Z) - DEEM: Diffusion Models Serve as the Eyes of Large Language Models for Image Perception [66.88792390480343]
We propose DEEM, a simple but effective approach that utilizes the generative feedback of diffusion models to align the semantic distributions of the image encoder.
DEEM exhibits enhanced robustness and a superior capacity to alleviate model hallucinations while utilizing fewer trainable parameters, less pre-training data, and a smaller base model size.
arXiv Detail & Related papers (2024-05-24T05:46:04Z) - Improving Normative Modeling for Multi-modal Neuroimaging Data using
mixture-of-product-of-experts variational autoencoders [0.0]
Existing variational autoencoder (VAE)-based normative models aggregate information from multiple modalities by estimating product or averaging of unimodal latent posteriors.
This can often lead to uninformative joint latent distributions which affects the estimation of subject-level deviations.
We adopted the Mixture-of-Product-of-Experts technique which allows better modelling of the joint latent posterior.
arXiv Detail & Related papers (2023-12-02T01:17:01Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Multiclass Semantic Segmentation to Identify Anatomical Sub-Regions of
Brain and Measure Neuronal Health in Parkinson's Disease [2.288652563296735]
Currently, a machine learning model to analyze sub-anatomical regions of the brain to analyze 2D histological images is not available.
In this study, we trained our best fit model on approximately one thousand annotated 2D brain images stained with Nissl/ Haematoxylin and Tyrosine Hydroxylase enzyme (TH, indicator of dopaminergic neuron viability)
The model effectively is able to detect two sub-regions compacta (SNCD) and reticulata (SNr) in all the images.
arXiv Detail & Related papers (2023-01-07T19:35:28Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
Self-attention modules (SAMs) produce strongly correlated attention maps across different layers.
Dense-and-Implicit Attention (DIA) shares SAMs across layers and employs a long short-term memory module.
Our simple yet effective DIA can consistently enhance various network backbones.
arXiv Detail & Related papers (2022-10-27T13:24:08Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
A simple yet effective multi-scale semantics-guided neural network is proposed for skeleton-based action recognition.
MS-SGN achieves the state-of-the-art performance on the NTU60, NTU120, and SYSU datasets.
arXiv Detail & Related papers (2021-11-07T03:50:50Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Classification of Brain Tumours in MR Images using Deep Spatiospatial
Models [0.0]
This paper uses twotemporal models, ResNet (2+1)D and ResNet Mixed Convolution, to classify different types of brain tumours.
It was observed that both these models performed superior to the pure 3D convolutional model, ResNet18.
arXiv Detail & Related papers (2021-05-28T19:27:51Z) - Learning Multi-Modal Volumetric Prostate Registration with Weak
Inter-Subject Spatial Correspondence [2.6894568533991543]
We introduce an auxiliary input to the neural network for the prior information about the prostate location in the MR sequence.
With weakly labelled MR-TRUS prostate data, we showed registration quality comparable to the state-of-the-art deep learning-based method.
arXiv Detail & Related papers (2021-02-09T16:48:59Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.