Enhancing Non-English Capabilities of English-Centric Large Language Models through Deep Supervision Fine-Tuning
- URL: http://arxiv.org/abs/2503.01275v2
- Date: Wed, 05 Mar 2025 13:10:07 GMT
- Title: Enhancing Non-English Capabilities of English-Centric Large Language Models through Deep Supervision Fine-Tuning
- Authors: Wenshuai Huo, Xiaocheng Feng, Yichong Huang, Chengpeng Fu, Baohang Li, Yangfan Ye, Zhirui Zhang, Dandan Tu, Duyu Tang, Yunfei Lu, Hui Wang, Bing Qin,
- Abstract summary: We introduce a deep supervision fine-tuning method (DFT) that incorporates additional supervision in the internal layers of the model to guide its workflow.<n>Our method guides the model to not only consider the final generated result when processing non-English inputs but also ensure the accuracy of internal representations.
- Score: 42.166438218926274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated significant progress in multilingual language understanding and generation. However, due to the imbalance in training data, their capabilities in non-English languages are limited. Recent studies revealed the English-pivot multilingual mechanism of LLMs, where LLMs implicitly convert non-English queries into English ones at the bottom layers and adopt English for thinking at the middle layers. However, due to the absence of explicit supervision for cross-lingual alignment in the intermediate layers of LLMs, the internal representations during these stages may become inaccurate. In this work, we introduce a deep supervision fine-tuning method (DFT) that incorporates additional supervision in the internal layers of the model to guide its workflow. Specifically, we introduce two training objectives on different layers of LLMs: one at the bottom layers to constrain the conversion of the target language into English, and another at the middle layers to constrain reasoning in English. To effectively achieve the guiding purpose, we designed two types of supervision signals: logits and feature, which represent a stricter constraint and a relatively more relaxed guidance. Our method guides the model to not only consider the final generated result when processing non-English inputs but also ensure the accuracy of internal representations. We conducted extensive experiments on typical English-centric large models, LLaMA-2 and Gemma-2, and the results on multiple multilingual datasets show that our method significantly outperforms traditional fine-tuning methods.
Related papers
- LayAlign: Enhancing Multilingual Reasoning in Large Language Models via Layer-Wise Adaptive Fusion and Alignment Strategy [33.85811169010525]
Large language models (LLMs) exhibit suboptimal performance on low-resource languages.
Recent approaches have leveraged multilingual encoders alongside LLMs by introducing trainable parameters connecting the two models.
We propose aname, a framework that integrates representations from all encoder layers.
arXiv Detail & Related papers (2025-02-17T03:45:03Z) - SLAM: Towards Efficient Multilingual Reasoning via Selective Language Alignment [78.4550589538805]
We propose an efficient multilingual reasoning alignment approach that precisely identifies and fine-tunes the layers responsible for handling multilingualism.<n> Experimental results show that our method, SLAM, only tunes 6 layers' feed-forward sub-layers including 6.5-8% of all parameters within 7B and 13B LLMs.
arXiv Detail & Related papers (2025-01-07T10:29:43Z) - Pruning Multilingual Large Language Models for Multilingual Inference [28.36717615166238]
This study explores how to enhance the zero-shot performance of MLLMs in non-English languages.
We first analyze the behavior of MLLMs when performing translation and reveal that there are large magnitude features that play a critical role in the translation process.
arXiv Detail & Related papers (2024-09-25T13:15:50Z) - Quality or Quantity? On Data Scale and Diversity in Adapting Large Language Models for Low-Resource Translation [62.202893186343935]
We explore what it would take to adapt Large Language Models for low-resource languages.
We show that parallel data is critical during both pre-training andSupervised Fine-Tuning (SFT)
Our experiments with three LLMs across two low-resourced language groups reveal consistent trends, underscoring the generalizability of our findings.
arXiv Detail & Related papers (2024-08-23T00:59:38Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
Large language models (LLMs) have exhibited remarkable performance in various natural language processing tasks.
We propose the TasTe framework, which stands for translating through self-reflection.
The evaluation results in four language directions on the WMT22 benchmark reveal the effectiveness of our approach compared to existing methods.
arXiv Detail & Related papers (2024-06-12T17:21:21Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
We propose a question alignment framework to bridge the gap between large language models' English and non-English performance.
Experiment results show it can boost multilingual performance across diverse reasoning scenarios, model families, and sizes.
We analyze representation space, generated response and data scales, and reveal how question translation training strengthens language alignment within LLMs.
arXiv Detail & Related papers (2024-05-02T14:49:50Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
Off-target translation remains an unsolved problem, especially for low-resource languages.
Recent works have either designed advanced prompting strategies to highlight the functionality of translation instructions or exploited the in-context learning ability of LLMs.
In this work, we design a two-stage fine-tuning algorithm to improve the instruction-following ability (especially the translation direction) of LLMs.
arXiv Detail & Related papers (2024-03-21T13:47:40Z) - Adapting Large Language Models for Document-Level Machine Translation [46.370862171452444]
Large language models (LLMs) have significantly advanced various natural language processing (NLP) tasks.
Recent research indicates that moderately-sized LLMs often outperform larger ones after task-specific fine-tuning.
This study focuses on adapting LLMs for document-level machine translation (DocMT) for specific language pairs.
arXiv Detail & Related papers (2024-01-12T09:29:13Z) - Tokenizer Choice For LLM Training: Negligible or Crucial? [30.33170936148845]
We study the influence of tokenizer choice on Large Language Models (LLMs) downstream performance by training 24 mono- and multilingual LLMs.
We find that the tokenizer choice can significantly impact the model's downstream performance and training costs.
We show that multilingual tokenizers trained on the five most frequent European languages require vocabulary size increases of factor three in comparison to English.
arXiv Detail & Related papers (2023-10-12T22:44:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.