Statistical physics analysis of graph neural networks: Approaching optimality in the contextual stochastic block model
- URL: http://arxiv.org/abs/2503.01361v1
- Date: Mon, 03 Mar 2025 09:55:10 GMT
- Title: Statistical physics analysis of graph neural networks: Approaching optimality in the contextual stochastic block model
- Authors: O. Duranthon, L. Zdeborová,
- Abstract summary: Graph neural networks (GNNs) are designed to process data associated with graphs.<n>GNNs can encounter difficulties in gathering information from nodes far apart by iterated aggregation steps.<n>We show how the architecture of the GCN has to scale with the depth to avoid oversmoothing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Graph neural networks (GNNs) are designed to process data associated with graphs. They are finding an increasing range of applications; however, as with other modern machine learning techniques, their theoretical understanding is limited. GNNs can encounter difficulties in gathering information from nodes that are far apart by iterated aggregation steps. This situation is partly caused by so-called oversmoothing; and overcoming it is one of the practically motivated challenges. We consider the situation where information is aggregated by multiple steps of convolution, leading to graph convolutional networks (GCNs). We analyze the generalization performance of a basic GCN, trained for node classification on data generated by the contextual stochastic block model. We predict its asymptotic performance by deriving the free energy of the problem, using the replica method, in the high-dimensional limit. Calling depth the number of convolutional steps, we show the importance of going to large depth to approach the Bayes-optimality. We detail how the architecture of the GCN has to scale with the depth to avoid oversmoothing. The resulting large depth limit can be close to the Bayes-optimality and leads to a continuous GCN. Technically, we tackle this continuous limit via an approach that resembles dynamical mean-field theory (DMFT) with constraints at the initial and final times. An expansion around large regularization allows us to solve the corresponding equations for the performance of the deep GCN. This promising tool may contribute to the analysis of further deep neural networks.
Related papers
- DeltaGNN: Graph Neural Network with Information Flow Control [5.563171090433323]
Graph Neural Networks (GNNs) are designed to process graph-structured data through neighborhood aggregations in the message passing process.<n>Message-passing enables GNNs to understand short-range spatial interactions, but also causes them to suffer from over-smoothing and over-squashing.<n>We propose a mechanism called emph information flow control to address over-smoothing and over-squashing with linear computational overhead.<n>We benchmark our model across 10 real-world datasets, including graphs with varying sizes, topologies, densities, and homophilic ratios, showing superior performance
arXiv Detail & Related papers (2025-01-10T14:34:20Z) - Graph Neural Networks Do Not Always Oversmooth [46.57665708260211]
We study oversmoothing in graph convolutional networks (GCNs) by using their Gaussian process (GP) equivalence in the limit of infinitely many hidden features.
We identify a new, non-oversmoothing phase: if the initial weights of the network have sufficiently large variance, GCNs do not oversmooth, and node features remain informative even at large depth.
arXiv Detail & Related papers (2024-06-04T12:47:13Z) - Layer-wise training for self-supervised learning on graphs [0.0]
End-to-end training of graph neural networks (GNN) on large graphs presents several memory and computational challenges.
We propose Layer-wise Regularized Graph Infomax, an algorithm to train GNNs layer by layer in a self-supervised manner.
arXiv Detail & Related papers (2023-09-04T10:23:39Z) - DRGCN: Dynamic Evolving Initial Residual for Deep Graph Convolutional
Networks [19.483662490506646]
We propose a novel model called Dynamic evolving initial Residual Graph Convolutional Network (DRGCN)
Our experimental results show that our model effectively relieves the problem of over-smoothing in deep GCNs.
Our model reaches new SOTA results on the large-scale ogbn-arxiv dataset of Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-02-10T06:57:12Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs)
We present a new ensembling training manner, named EnGCN, to address the existing issues.
Our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets.
arXiv Detail & Related papers (2022-10-14T03:43:05Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - DeeperGCN: All You Need to Train Deeper GCNs [66.64739331859226]
Graph Convolutional Networks (GCNs) have been drawing significant attention with the power of representation learning on graphs.
Unlike Convolutional Neural Networks (CNNs), which are able to take advantage of stacking very deep layers, GCNs suffer from vanishing gradient, over-smoothing and over-fitting issues when going deeper.
This paper proposes DeeperGCN that is capable of successfully and reliably training very deep GCNs.
arXiv Detail & Related papers (2020-06-13T23:00:22Z) - Deep Constraint-based Propagation in Graph Neural Networks [15.27048776159285]
We propose a novel approach to learning in Graph Neural Networks (GNNs) based on constrained optimization in the Lagrangian framework.
Our computational structure searches for saddle points of the Lagrangian in the adjoint space composed of weights, nodes state variables and Lagrange multipliers.
An experimental analysis shows that the proposed approach compares favourably with popular models on several benchmarks.
arXiv Detail & Related papers (2020-05-05T16:50:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.