Divide and Conquer: Heterogeneous Noise Integration for Diffusion-based Adversarial Purification
- URL: http://arxiv.org/abs/2503.01407v2
- Date: Mon, 24 Mar 2025 07:15:05 GMT
- Title: Divide and Conquer: Heterogeneous Noise Integration for Diffusion-based Adversarial Purification
- Authors: Gaozheng Pei, Shaojie Lyu, Gong Chen, Ke Ma, Qianqian Xu, Yingfei Sun, Qingming Huang,
- Abstract summary: Existing purification methods aim to disrupt adversarial perturbations by introducing a certain amount of noise through a forward diffusion process, followed by a reverse process to recover clean examples.<n>This approach is fundamentally flawed as the uniform operation of the forward process compromises normal pixels while attempting to combat adversarial perturbations.<n>We propose a heterogeneous purification strategy grounded in the interpretability of neural networks.<n>Our method decisively applies higher-intensity noise to specific pixels that the target model focuses on while the remaining pixels are subjected to only low-intensity noise.
- Score: 75.09791002021947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing diffusion-based purification methods aim to disrupt adversarial perturbations by introducing a certain amount of noise through a forward diffusion process, followed by a reverse process to recover clean examples. However, this approach is fundamentally flawed: the uniform operation of the forward process across all pixels compromises normal pixels while attempting to combat adversarial perturbations, resulting in the target model producing incorrect predictions. Simply relying on low-intensity noise is insufficient for effective defense. To address this critical issue, we implement a heterogeneous purification strategy grounded in the interpretability of neural networks. Our method decisively applies higher-intensity noise to specific pixels that the target model focuses on while the remaining pixels are subjected to only low-intensity noise. This requirement motivates us to redesign the sampling process of the diffusion model, allowing for the effective removal of varying noise levels. Furthermore, to evaluate our method against strong adaptative attack, our proposed method sharply reduces time cost and memory usage through a single-step resampling. The empirical evidence from extensive experiments across three datasets demonstrates that our method outperforms most current adversarial training and purification techniques by a substantial margin.
Related papers
- Robust Representation Consistency Model via Contrastive Denoising [83.47584074390842]
randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations.
diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples.
We reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space.
arXiv Detail & Related papers (2025-01-22T18:52:06Z) - Classifier Guidance Enhances Diffusion-based Adversarial Purification by Preserving Predictive Information [75.36597470578724]
Adversarial purification is one of the promising approaches to defend neural networks against adversarial attacks.
We propose gUided Purification (COUP) algorithm, which purifies while keeping away from the classifier decision boundary.
Experimental results show that COUP can achieve better adversarial robustness under strong attack methods.
arXiv Detail & Related papers (2024-08-12T02:48:00Z) - Efficient Diffusion Model for Image Restoration by Residual Shifting [63.02725947015132]
This study proposes a novel and efficient diffusion model for image restoration.
Our method avoids the need for post-acceleration during inference, thereby avoiding the associated performance deterioration.
Our method achieves superior or comparable performance to current state-of-the-art methods on three classical IR tasks.
arXiv Detail & Related papers (2024-03-12T05:06:07Z) - Adversarial Purification of Information Masking [8.253834429336656]
Adrial attacks generate minuscule, imperceptible perturbations to images to deceive neural networks.
Counteracting these, adversarial purification methods seek to transform adversarial input samples into clean output images to defend against adversarial attacks.
We propose a novel adversarial purification approach named Information Mask Purification (IMPure) to extensively eliminate adversarial perturbations.
arXiv Detail & Related papers (2023-11-26T15:50:19Z) - Diffusion Models for Adversarial Purification [69.1882221038846]
Adrial purification refers to a class of defense methods that remove adversarial perturbations using a generative model.
We propose DiffPure that uses diffusion models for adversarial purification.
Our method achieves the state-of-the-art results, outperforming current adversarial training and adversarial purification methods.
arXiv Detail & Related papers (2022-05-16T06:03:00Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.