Improving Retrospective Language Agents via Joint Policy Gradient Optimization
- URL: http://arxiv.org/abs/2503.01490v1
- Date: Mon, 03 Mar 2025 12:54:54 GMT
- Title: Improving Retrospective Language Agents via Joint Policy Gradient Optimization
- Authors: Xueyang Feng, Bo Lan, Quanyu Dai, Lei Wang, Jiakai Tang, Xu Chen, Zhenhua Dong, Ji-Rong Wen,
- Abstract summary: RetroAct is a framework that jointly optimize both task-planning and self-reflective evolution capabilities in language agents.<n>We develop a two-stage joint optimization process that integrates imitation learning and reinforcement learning.<n>We conduct extensive experiments across various testing environments, demonstrating RetroAct has substantial improvements in task performance and decision-making processes.
- Score: 57.35348425288859
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent research advancements within the community, large language models (LLMs) have sparked great interest in creating autonomous agents. However, current prompt-based agents often heavily rely on large-scale LLMs. Meanwhile, although fine-tuning methods significantly enhance the capabilities of smaller LLMs, the fine-tuned agents often lack the potential for self-reflection and self-improvement. To address these challenges, we introduce a novel agent framework named RetroAct, which is a framework that jointly optimizes both task-planning and self-reflective evolution capabilities in language agents. Specifically, we develop a two-stage joint optimization process that integrates imitation learning and reinforcement learning, and design an off-policy joint policy gradient optimization algorithm with imitation learning regularization to enhance the data efficiency and training stability in agent tasks. RetroAct significantly improves the performance of open-source models, reduces dependency on closed-source LLMs, and enables fine-tuned agents to learn and evolve continuously. We conduct extensive experiments across various testing environments, demonstrating RetroAct has substantial improvements in task performance and decision-making processes.
Related papers
- LLM Post-Training: A Deep Dive into Reasoning Large Language Models [131.10969986056]
Large Language Models (LLMs) have transformed the natural language processing landscape and brought to life diverse applications.
Post-training methods enable LLMs to refine their knowledge, improve reasoning, enhance factual accuracy, and align more effectively with user intents and ethical considerations.
arXiv Detail & Related papers (2025-02-28T18:59:54Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.<n>We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - RAG-Modulo: Solving Sequential Tasks using Experience, Critics, and Language Models [5.0741409008225755]
Large language models (LLMs) have emerged as promising tools for solving challenging robotic tasks.
Most existing LLM-based agents lack the ability to retain and learn from past interactions.
We propose RAG-Modulo, a framework that enhances LLM-based agents with a memory of past interactions and incorporates critics to evaluate the agents' decisions.
arXiv Detail & Related papers (2024-09-18T20:03:32Z) - CoEvol: Constructing Better Responses for Instruction Finetuning through Multi-Agent Cooperation [33.33513657902765]
We propose CoEvol, an LLM-based multi-agent cooperation framework for the improvement of responses to instructions.
Empirically, models equipped with CoEvol outperform competitive baselines evaluated by MT-Bench and AlpacaEval.
arXiv Detail & Related papers (2024-06-11T08:35:37Z) - A Survey on Self-Evolution of Large Language Models [116.54238664264928]
Large language models (LLMs) have significantly advanced in various fields and intelligent agent applications.
To address this issue, self-evolution approaches that enable LLMs to autonomously acquire, refine, and learn from experiences generated by the model itself are rapidly growing.
arXiv Detail & Related papers (2024-04-22T17:43:23Z) - CMAT: A Multi-Agent Collaboration Tuning Framework for Enhancing Small Language Models [8.123272461141815]
We introduce the TinyAgent model, trained on a meticulously curated high-quality dataset.
We also present the Collaborative Multi-Agent Tuning (CMAT) framework, an innovative system designed to augment language agent capabilities.
In this research, we propose a new communication agent framework that integrates multi-agent systems with environmental feedback mechanisms.
arXiv Detail & Related papers (2024-04-02T06:07:35Z) - Offline Training of Language Model Agents with Functions as Learnable Weights [39.88545362699836]
We present a novel paradigm of training Large Language Models (LLMs) agents without modifying the LLM weights.
We develop Agentr that employs the LLM to update agents' functions and devise an agent training algorithm with two strategies, roll-back, and early-stop.
With extensive experiments, we showcase that the agent training paradigm could significantly improve the performance of representative LLM agents.
arXiv Detail & Related papers (2024-02-17T18:31:21Z) - SELF: Self-Evolution with Language Feedback [68.6673019284853]
'SELF' (Self-Evolution with Language Feedback) is a novel approach to advance large language models.
It enables LLMs to self-improve through self-reflection, akin to human learning processes.
Our experiments in mathematics and general tasks demonstrate that SELF can enhance the capabilities of LLMs without human intervention.
arXiv Detail & Related papers (2023-10-01T00:52:24Z) - Learning to Optimize for Reinforcement Learning [58.01132862590378]
Reinforcement learning (RL) is essentially different from supervised learning, and in practice, these learneds do not work well even in simple RL tasks.
Agent-gradient distribution is non-independent and identically distributed, leading to inefficient meta-training.
We show that, although only trained in toy tasks, our learned can generalize unseen complex tasks in Brax.
arXiv Detail & Related papers (2023-02-03T00:11:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.