AutoLUT: LUT-Based Image Super-Resolution with Automatic Sampling and Adaptive Residual Learning
- URL: http://arxiv.org/abs/2503.01565v2
- Date: Fri, 07 Mar 2025 16:08:17 GMT
- Title: AutoLUT: LUT-Based Image Super-Resolution with Automatic Sampling and Adaptive Residual Learning
- Authors: Yuheng Xu, Shijie Yang, Xin Liu, Jie Liu, Jie Tang, Gangshan Wu,
- Abstract summary: We introduce two plug-and-play modules designed to capture and leverage pixel information effectively in Look-Up Table (LUT) based super-resolution networks.<n>Our method achieves significant performance improvements on both MuLUT and SPF-LUT while maintaining similar storage sizes.
- Score: 39.17438080141985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the increasing popularity of Hi-DPI screens has driven a rising demand for high-resolution images. However, the limited computational power of edge devices poses a challenge in deploying complex super-resolution neural networks, highlighting the need for efficient methods. While prior works have made significant progress, they have not fully exploited pixel-level information. Moreover, their reliance on fixed sampling patterns limits both accuracy and the ability to capture fine details in low-resolution images. To address these challenges, we introduce two plug-and-play modules designed to capture and leverage pixel information effectively in Look-Up Table (LUT) based super-resolution networks. Our method introduces Automatic Sampling (AutoSample), a flexible LUT sampling approach where sampling weights are automatically learned during training to adapt to pixel variations and expand the receptive field without added inference cost. We also incorporate Adaptive Residual Learning (AdaRL) to enhance inter-layer connections, enabling detailed information flow and improving the network's ability to reconstruct fine details. Our method achieves significant performance improvements on both MuLUT and SPF-LUT while maintaining similar storage sizes. Specifically, for MuLUT, we achieve a PSNR improvement of approximately +0.20 dB improvement on average across five datasets. For SPF-LUT, with more than a 50% reduction in storage space and about a 2/3 reduction in inference time, our method still maintains performance comparable to the original. The code is available at https://github.com/SuperKenVery/AutoLUT.
Related papers
- FLARES: Fast and Accurate LiDAR Multi-Range Semantic Segmentation [52.89847760590189]
3D scene understanding is a critical yet challenging task in autonomous driving.<n>Recent methods leverage the range-view representation to improve processing efficiency.<n>We re-design the workflow for range-view-based LiDAR semantic segmentation.
arXiv Detail & Related papers (2025-02-13T12:39:26Z) - EPS: Efficient Patch Sampling for Video Overfitting in Deep Super-Resolution Model Training [15.684865589513597]
We propose an efficient patch sampling method named EPS for video SR network overfitting.
Our method reduces the number of patches for the training to 4% to 25%, depending on the resolution and number of clusters.
Compared to the state-of-the-art patch sampling method, EMT, our approach achieves an 83% decrease in overall run time.
arXiv Detail & Related papers (2024-11-25T12:01:57Z) - LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
Recent deep neural networks (DNNs) have made impressive progress in performance by introducing learned data priors.
We propose a novel method of Learning Resampling (termed LeRF) which takes advantage of both the structural priors learned by DNNs and the locally continuous assumption.
LeRF assigns spatially varying resampling functions to input image pixels and learns to predict the shapes of these resampling functions with a neural network.
arXiv Detail & Related papers (2024-07-13T16:09:45Z) - Low-Resolution Self-Attention for Semantic Segmentation [93.30597515880079]
We introduce the Low-Resolution Self-Attention (LRSA) mechanism to capture global context at a significantly reduced computational cost.<n>Our approach involves computing self-attention in a fixed low-resolution space regardless of the input image's resolution.<n>We demonstrate the effectiveness of our LRSA approach by building the LRFormer, a vision transformer with an encoder-decoder structure.
arXiv Detail & Related papers (2023-10-08T06:10:09Z) - Pixel Adapter: A Graph-Based Post-Processing Approach for Scene Text
Image Super-Resolution [22.60056946339325]
We propose the Pixel Adapter Module (PAM) based on graph attention to address pixel distortion caused by upsampling.
The PAM effectively captures local structural information by allowing each pixel to interact with its neighbors and update features.
We demonstrate that our proposed method generates high-quality super-resolution images, surpassing existing methods in recognition accuracy.
arXiv Detail & Related papers (2023-09-16T08:12:12Z) - Super-Resolution of License Plate Images Using Attention Modules and
Sub-Pixel Convolution Layers [3.8831062015253055]
We introduce a Single-Image Super-Resolution (SISR) approach to enhance the detection of structural and textural features in surveillance images.
Our approach incorporates sub-pixel convolution layers and a loss function that uses an Optical Character Recognition (OCR) model for feature extraction.
Our results show that our approach for reconstructing these low-resolution synthesized images outperforms existing ones in both quantitative and qualitative measures.
arXiv Detail & Related papers (2023-05-27T00:17:19Z) - Toward DNN of LUTs: Learning Efficient Image Restoration with Multiple
Look-Up Tables [47.15181829317732]
High-definition screens on edge devices stimulate a strong demand for efficient image restoration algorithms.
The size of a single look-up table grows exponentially with the increase of its indexing capacity.
We propose a universal method to construct multiple LUTs like a neural network, termed MuLUT.
arXiv Detail & Related papers (2023-03-25T16:00:33Z) - Efficient Context Integration through Factorized Pyramidal Learning for
Ultra-Lightweight Semantic Segmentation [1.0499611180329804]
We propose a novel Factorized Pyramidal Learning (FPL) module to aggregate rich contextual information in an efficient manner.
We decompose the spatial pyramid into two stages which enables a simple and efficient feature fusion within the module to solve the notorious checkerboard effect.
Based on the FPL module and FIR unit, we propose an ultra-lightweight real-time network, called FPLNet, which achieves state-of-the-art accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-02-23T05:34:51Z) - Hybrid Pixel-Unshuffled Network for Lightweight Image Super-Resolution [64.54162195322246]
Convolutional neural network (CNN) has achieved great success on image super-resolution (SR)
Most deep CNN-based SR models take massive computations to obtain high performance.
We propose a novel Hybrid Pixel-Unshuffled Network (HPUN) by introducing an efficient and effective downsampling module into the SR task.
arXiv Detail & Related papers (2022-03-16T20:10:41Z) - Pixel-Level Self-Paced Learning for Super-Resolution [101.13851473792334]
This paper designs a training strategy named Pixel-level Self-Paced Learning (PSPL) to accelerate the convergence velocity of SISR models.
PSPL imitating self-paced learning gives each pixel in the predicted SR image and its corresponding pixel in ground truth an attention weight, to guide the model to a better region in parameter space.
Experiments proved that PSPL could speed up the training of SISR models, and prompt several existing models to obtain new better results.
arXiv Detail & Related papers (2020-03-06T10:04:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.