Merging Hazy Sets with m-Schemes: A Geometric Approach to Data Visualization
- URL: http://arxiv.org/abs/2503.01664v1
- Date: Mon, 03 Mar 2025 15:40:08 GMT
- Title: Merging Hazy Sets with m-Schemes: A Geometric Approach to Data Visualization
- Authors: Lukas Silvester Barth, Hannaneh Fahimi, Parvaneh Joharinad, Jürgen Jost, Janis Keck,
- Abstract summary: We introduce a framework for aggregating dissimilarity functions that arise from locally adjusting a metric through density-aware normalization.<n>We formalize these approaches as m-schemes, a class of methods closely related to t-norms and t-conorms in probabilistic metrics.
- Score: 0.09320657506524149
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Many machine learning algorithms try to visualize high dimensional metric data in 2D in such a way that the essential geometric and topological features of the data are highlighted. In this paper, we introduce a framework for aggregating dissimilarity functions that arise from locally adjusting a metric through density-aware normalization, as employed in the IsUMap method. We formalize these approaches as m-schemes, a class of methods closely related to t-norms and t-conorms in probabilistic metrics, as well as to composition laws in information theory. These m-schemes provide a flexible and theoretically grounded approach to refining distance-based embeddings.
Related papers
- Wrapped Gaussian on the manifold of Symmetric Positive Definite Matrices [6.7523635840772505]
Circular and non-flat data distributions are prevalent across diverse domains of data science.<n>A principled approach to accounting for the underlying geometry of such data is pivotal.<n>This work lays the groundwork for extending classical machine learning and statistical methods to more complex and structured data.
arXiv Detail & Related papers (2025-02-03T16:46:46Z) - (Deep) Generative Geodesics [57.635187092922976]
We introduce a newian metric to assess the similarity between any two data points.
Our metric leads to the conceptual definition of generative distances and generative geodesics.
Their approximations are proven to converge to their true values under mild conditions.
arXiv Detail & Related papers (2024-07-15T21:14:02Z) - The Fisher-Rao geometry of CES distributions [50.50897590847961]
The Fisher-Rao information geometry allows for leveraging tools from differential geometry.
We will present some practical uses of these geometric tools in the framework of elliptical distributions.
arXiv Detail & Related papers (2023-10-02T09:23:32Z) - Data-driven abstractions via adaptive refinements and a Kantorovich
metric [extended version] [56.94699829208978]
We introduce an adaptive refinement procedure for smart, and scalable abstraction of dynamical systems.
In order to learn the optimal structure, we define a Kantorovich-inspired metric between Markov chains.
We show that our method yields a much better computational complexity than using classical linear programming techniques.
arXiv Detail & Related papers (2023-03-30T11:26:40Z) - Intrinsic Dimension for Large-Scale Geometric Learning [0.0]
A naive approach to determine the dimension of a dataset is based on the number of attributes.
More sophisticated methods derive a notion of intrinsic dimension (ID) that employs more complex feature functions.
arXiv Detail & Related papers (2022-10-11T09:50:50Z) - Geometric Methods for Sampling, Optimisation, Inference and Adaptive
Agents [102.42623636238399]
We identify fundamental geometric structures that underlie the problems of sampling, optimisation, inference and adaptive decision-making.
We derive algorithms that exploit these geometric structures to solve these problems efficiently.
arXiv Detail & Related papers (2022-03-20T16:23:17Z) - Improving Metric Dimensionality Reduction with Distributed Topology [68.8204255655161]
DIPOLE is a dimensionality-reduction post-processing step that corrects an initial embedding by minimizing a loss functional with both a local, metric term and a global, topological term.
We observe that DIPOLE outperforms popular methods like UMAP, t-SNE, and Isomap on a number of popular datasets.
arXiv Detail & Related papers (2021-06-14T17:19:44Z) - Geometric variational inference [0.0]
Variational Inference (VI) or Markov-Chain Monte-Carlo (MCMC) techniques are used to go beyond point estimates.
This work proposes geometric Variational Inference (geoVI), a method based on Riemannian geometry and the Fisher information metric.
The distribution, expressed in the coordinate system induced by the transformation, takes a particularly simple form that allows for an accurate variational approximation.
arXiv Detail & Related papers (2021-05-21T17:18:50Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
offline reinforcement learning approaches can be divided into proximal and uncertainty-aware methods.
In this work, we demonstrate the benefit of combining the two in a latent variational model.
Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data.
arXiv Detail & Related papers (2021-02-22T19:42:40Z) - Learning Flat Latent Manifolds with VAEs [16.725880610265378]
We propose an extension to the framework of variational auto-encoders, where the Euclidean metric is a proxy for the similarity between data points.
We replace the compact prior typically used in variational auto-encoders with a recently presented, more expressive hierarchical one.
We evaluate our method on a range of data-sets, including a video-tracking benchmark.
arXiv Detail & Related papers (2020-02-12T09:54:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.