MAPS: Motivation-Aware Personalized Search via LLM-Driven Consultation Alignment
- URL: http://arxiv.org/abs/2503.01711v3
- Date: Wed, 05 Mar 2025 05:52:00 GMT
- Title: MAPS: Motivation-Aware Personalized Search via LLM-Driven Consultation Alignment
- Authors: Weicong Qin, Yi Xu, Weijie Yu, Chenglei Shen, Ming He, Jianping Fan, Xiao Zhang, Jun Xu,
- Abstract summary: Motivation-Aware Personalized Search aims to retrieve and rank items that match users' preferences and search intent.<n>Our analysis of a real-world e-commerce platform reveals that users often engage in relevant consultations before searching.<n>To address these, we propose a Motivation-Aware Personalized Search (MAPS) method.
- Score: 16.10791252542592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalized product search aims to retrieve and rank items that match users' preferences and search intent. Despite their effectiveness, existing approaches typically assume that users' query fully captures their real motivation. However, our analysis of a real-world e-commerce platform reveals that users often engage in relevant consultations before searching, indicating they refine intents through consultations based on motivation and need. The implied motivation in consultations is a key enhancing factor for personalized search. This unexplored area comes with new challenges including aligning contextual motivations with concise queries, bridging the category-text gap, and filtering noise within sequence history. To address these, we propose a Motivation-Aware Personalized Search (MAPS) method. It embeds queries and consultations into a unified semantic space via LLMs, utilizes a Mixture of Attention Experts (MoAE) to prioritize critical semantics, and introduces dual alignment: (1) contrastive learning aligns consultations, reviews, and product features; (2) bidirectional attention integrates motivation-aware embeddings with user preferences. Extensive experiments on real and synthetic data show MAPS outperforms existing methods in both retrieval and ranking tasks.
Related papers
- LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation [50.98046887582194]
We propose an explicit and implicit multi-interest learning framework to model user interests on two levels: behavior and semantics.
The proposed EIMF framework effectively and efficiently combines small models with LLM to improve the accuracy of multi-interest modeling.
arXiv Detail & Related papers (2024-11-14T13:00:23Z) - Towards Boosting LLMs-driven Relevance Modeling with Progressive Retrieved Behavior-augmented Prompting [23.61061000692023]
This study proposes leveraging user interactions recorded in search logs to yield insights into users' implicit search intentions.<n>We propose ProRBP, a novel Progressive Retrieved Behavior-augmented Prompting framework for integrating search scenario-oriented knowledge with Large Language Models.
arXiv Detail & Related papers (2024-08-18T11:07:38Z) - Improving Retrieval in Theme-specific Applications using a Corpus
Topical Taxonomy [52.426623750562335]
We introduce ToTER (Topical taxonomy Enhanced Retrieval) framework.
ToTER identifies the central topics of queries and documents with the guidance of the taxonomy, and exploits their topical relatedness to supplement missing contexts.
As a plug-and-play framework, ToTER can be flexibly employed to enhance various PLM-based retrievers.
arXiv Detail & Related papers (2024-03-07T02:34:54Z) - Knowledge-Augmented Large Language Models for Personalized Contextual
Query Suggestion [16.563311988191636]
We construct an entity-centric knowledge store for each user based on their search and browsing activities on the web.
This knowledge store is light-weight, since it only produces user-specific aggregate projections of interests and knowledge onto public knowledge graphs.
arXiv Detail & Related papers (2023-11-10T01:18:47Z) - Beyond Semantics: Learning a Behavior Augmented Relevance Model with
Self-supervised Learning [25.356999988217325]
Relevance modeling aims to locate desirable items for corresponding queries.
auxiliary query-item interactions extracted from user historical behavior data could provide hints to reveal users' search intents further.
Our model builds multi-level co-attention for distilling coarse-grained and fine-grained semantic representations from both neighbor and target views.
arXiv Detail & Related papers (2023-08-10T06:52:53Z) - When Search Meets Recommendation: Learning Disentangled Search
Representation for Recommendation [56.98380787425388]
We propose a search-Enhanced framework for the Sequential Recommendation (SESRec)
SESRec disentangling similar and dissimilar representations within S&R behaviors.
Experiments on both industrial and public datasets demonstrate that SESRec consistently outperforms state-of-the-art models.
arXiv Detail & Related papers (2023-05-18T09:04:50Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z) - Graph Enhanced BERT for Query Understanding [55.90334539898102]
query understanding plays a key role in exploring users' search intents and facilitating users to locate their most desired information.
In recent years, pre-trained language models (PLMs) have advanced various natural language processing tasks.
We propose a novel graph-enhanced pre-training framework, GE-BERT, which can leverage both query content and the query graph.
arXiv Detail & Related papers (2022-04-03T16:50:30Z) - Compositional Attention: Disentangling Search and Retrieval [66.7108739597771]
Multi-head, key-value attention is the backbone of the Transformer model and its variants.
Standard attention heads learn a rigid mapping between search and retrieval.
We propose a novel attention mechanism, called Compositional Attention, that replaces the standard head structure.
arXiv Detail & Related papers (2021-10-18T15:47:38Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
We explore the feasibility of approximate exposing query identification (EQI) as a retrieval task by reversing the role of queries and documents in two classes of search systems.
We derive an evaluation metric to measure the quality of a ranking of exposing queries, as well as conducting an empirical analysis focusing on various practical aspects of approximate EQI.
arXiv Detail & Related papers (2021-10-14T20:19:27Z) - Analysing Mixed Initiatives and Search Strategies during Conversational
Search [31.63357369175702]
We present a model for conversational search -- from which we instantiate different observed conversational search strategies, where the agent elicits: (i) Feedback-First, or (ii) Feedback-After.
Our analysis reveals that there is no superior or dominant combination, instead it shows that query clarifications are better when asked first, while query suggestions are better when asked after presenting results.
arXiv Detail & Related papers (2021-09-13T13:30:10Z) - User Intent Inference for Web Search and Conversational Agents [3.9400263964632836]
thesis work focuses on: 1) Utterance topic and intent classification for conversational agents 2) Query intent mining and classification for Web search engines.
To address the first topic, I proposed novel models to incorporate entity information and conversation-context clues to predict both topic and intent of the user's utterances.
For the second research topic, I plan to extend the existing state of the art methods in Web search intent prediction to the e-commerce domain.
arXiv Detail & Related papers (2020-05-28T07:04:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.