Generating Counterfactual Explanations Under Temporal Constraints
- URL: http://arxiv.org/abs/2503.01792v1
- Date: Mon, 03 Mar 2025 18:22:48 GMT
- Title: Generating Counterfactual Explanations Under Temporal Constraints
- Authors: Andrei Buliga, Chiara Di Francescomarino, Chiara Ghidini, Marco Montali, Massimiliano Ronzani,
- Abstract summary: We introduce a novel approach for generating temporally constrained counterfactuals, guaranteed to comply with background knowledge expressed in Linear Temporal Logic on process traces.<n>The generated counterfactuals are temporally meaningful and more interpretable for applications involving temporal dependencies.
- Score: 16.07619239510696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Counterfactual explanations are one of the prominent eXplainable Artificial Intelligence (XAI) techniques, and suggest changes to input data that could alter predictions, leading to more favourable outcomes. Existing counterfactual methods do not readily apply to temporal domains, such as that of process mining, where data take the form of traces of activities that must obey to temporal background knowledge expressing which dynamics are possible and which not. Specifically, counterfactuals generated off-the-shelf may violate the background knowledge, leading to inconsistent explanations. This work tackles this challenge by introducing a novel approach for generating temporally constrained counterfactuals, guaranteed to comply by design with background knowledge expressed in Linear Temporal Logic on process traces (LTLp). We do so by infusing automata-theoretic techniques for LTLp inside a genetic algorithm for counterfactual generation. The empirical evaluation shows that the generated counterfactuals are temporally meaningful and more interpretable for applications involving temporal dependencies.
Related papers
- Directed Exploration in Reinforcement Learning from Linear Temporal Logic [59.707408697394534]
Linear temporal logic (LTL) is a powerful language for task specification in reinforcement learning.
We show that the synthesized reward signal remains fundamentally sparse, making exploration challenging.
We show how better exploration can be achieved by further leveraging the specification and casting its corresponding Limit Deterministic B"uchi Automaton (LDBA) as a Markov reward process.
arXiv Detail & Related papers (2024-08-18T14:25:44Z) - Guiding the generation of counterfactual explanations through temporal background knowledge for Predictive Process Monitoring [13.610101763172452]
We adapt state-of-the-art techniques for counterfactual generation in the domain of XAI to consider a series of temporal constraints at runtime.
We showcase that the inclusion of temporal background knowledge allows the generation of counterfactuals more conformant to the temporal background knowledge.
arXiv Detail & Related papers (2024-03-18T10:34:40Z) - Generating Feasible and Plausible Counterfactual Explanations for Outcome Prediction of Business Processes [45.502284864662585]
We introduce a data-driven approach, REVISEDplus, to generate plausible counterfactual explanations.
First, we restrict the counterfactual algorithm to generate counterfactuals that lie within a high-density region of the process data.
We also ensure plausibility by learning sequential patterns between the activities in the process cases.
arXiv Detail & Related papers (2024-03-14T09:56:35Z) - Nature-Inspired Local Propagation [68.63385571967267]
Natural learning processes rely on mechanisms where data representation and learning are intertwined in such a way as to respect locality.
We show that the algorithmic interpretation of the derived "laws of learning", which takes the structure of Hamiltonian equations, reduces to Backpropagation when the speed of propagation goes to infinity.
This opens the doors to machine learning based on full on-line information that are based the replacement of Backpropagation with the proposed local algorithm.
arXiv Detail & Related papers (2024-02-04T21:43:37Z) - CaRiNG: Learning Temporal Causal Representation under Non-Invertible Generation Process [22.720927418184672]
We propose a principled approach to learn the CAusal RepresentatIon of Non-invertible Generative temporal data with identifiability guarantees.
Specifically, we utilize temporal context to recover lost latent information and apply the conditions in our theory to guide the training process.
arXiv Detail & Related papers (2024-01-25T22:01:07Z) - Instructed Diffuser with Temporal Condition Guidance for Offline
Reinforcement Learning [71.24316734338501]
We propose an effective temporally-conditional diffusion model coined Temporally-Composable diffuser (TCD)
TCD extracts temporal information from interaction sequences and explicitly guides generation with temporal conditions.
Our method reaches or matches the best performance compared with prior SOTA baselines.
arXiv Detail & Related papers (2023-06-08T02:12:26Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
We study counterfactual synthesis from a new perspective of knowledge extrapolation.
We show that an adversarial game with a closed-form discriminator can be used to address the knowledge extrapolation problem.
Our method enjoys both elegant theoretical guarantees and superior performance in many scenarios.
arXiv Detail & Related papers (2022-05-21T08:39:42Z) - Improving Sequential Recommendations via Bidirectional Temporal Data Augmentation with Pre-training [46.5064172656298]
We introduce Bidirectional temporal data Augmentation with pre-training (BARec)
Our approach leverages bidirectional temporal augmentation and knowledge-enhanced fine-tuning to synthesize authentic pseudo-prior items.
Our comprehensive experimental analysis on five benchmark datasets confirms the superiority of BARec across both short and elongated sequence contexts.
arXiv Detail & Related papers (2021-12-13T07:33:28Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Multi-Agent Reinforcement Learning with Temporal Logic Specifications [65.79056365594654]
We study the problem of learning to satisfy temporal logic specifications with a group of agents in an unknown environment.
We develop the first multi-agent reinforcement learning technique for temporal logic specifications.
We provide correctness and convergence guarantees for our main algorithm.
arXiv Detail & Related papers (2021-02-01T01:13:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.