Uncertainty Comes for Free: Human-in-the-Loop Policies with Diffusion Models
- URL: http://arxiv.org/abs/2503.01876v1
- Date: Wed, 26 Feb 2025 15:12:29 GMT
- Title: Uncertainty Comes for Free: Human-in-the-Loop Policies with Diffusion Models
- Authors: Zhanpeng He, Yifeng Cao, Matei Ciocarlie,
- Abstract summary: We propose a method that allows diffusion policies to actively seek human assistance only when necessary, reducing reliance on constant human oversight.<n>We leverage the generative process of diffusion policies to compute an uncertainty-based metric based on which the autonomous agent can decide to request operator assistance at deployment time.<n>We show that the same method can be used for efficient data collection for fine-tuning diffusion policies in order to improve their autonomous performance.
- Score: 3.076241811701216
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Human-in-the-loop (HitL) robot deployment has gained significant attention in both academia and industry as a semi-autonomous paradigm that enables human operators to intervene and adjust robot behaviors at deployment time, improving success rates. However, continuous human monitoring and intervention can be highly labor-intensive and impractical when deploying a large number of robots. To address this limitation, we propose a method that allows diffusion policies to actively seek human assistance only when necessary, reducing reliance on constant human oversight. To achieve this, we leverage the generative process of diffusion policies to compute an uncertainty-based metric based on which the autonomous agent can decide to request operator assistance at deployment time, without requiring any operator interaction during training. Additionally, we show that the same method can be used for efficient data collection for fine-tuning diffusion policies in order to improve their autonomous performance. Experimental results from simulated and real-world environments demonstrate that our approach enhances policy performance during deployment for a variety of scenarios.
Related papers
- Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
We introduce a novel framework for learning world models.<n>By providing a scalable and robust framework, we pave the way for adaptive and efficient robotic systems in real-world applications.
arXiv Detail & Related papers (2025-01-17T10:39:09Z) - Inference-Time Policy Steering through Human Interactions [54.02655062969934]
During inference, humans are often removed from the policy execution loop.
We propose an Inference-Time Policy Steering framework that leverages human interactions to bias the generative sampling process.
Our proposed sampling strategy achieves the best trade-off between alignment and distribution shift.
arXiv Detail & Related papers (2024-11-25T18:03:50Z) - MEReQ: Max-Ent Residual-Q Inverse RL for Sample-Efficient Alignment from Intervention [81.56607128684723]
We introduce MEReQ (Maximum-Entropy Residual-Q Inverse Reinforcement Learning), designed for sample-efficient alignment from human intervention.
MereQ infers a residual reward function that captures the discrepancy between the human expert's and the prior policy's underlying reward functions.
It then employs Residual Q-Learning (RQL) to align the policy with human preferences using this residual reward function.
arXiv Detail & Related papers (2024-06-24T01:51:09Z) - IntervenGen: Interventional Data Generation for Robust and Data-Efficient Robot Imitation Learning [43.19346528232497]
A popular approach for increasing policy robustness to distribution shift is interactive imitation learning.
We propose IntervenGen, a novel data generation system that can autonomously produce a large set of corrective interventions.
We show that it can increase policy robustness by up to 39x with only 10 human interventions.
arXiv Detail & Related papers (2024-05-02T17:06:19Z) - Domain Randomization for Robust, Affordable and Effective Closed-loop
Control of Soft Robots [10.977130974626668]
Soft robots are gaining popularity thanks to their intrinsic safety to contacts and adaptability.
We show how Domain Randomization (DR) can solve this problem by enhancing RL policies for soft robots.
We introduce a novel algorithmic extension to previous adaptive domain randomization methods for the automatic inference of dynamics parameters for deformable objects.
arXiv Detail & Related papers (2023-03-07T18:50:00Z) - Asking for Help: Failure Prediction in Behavioral Cloning through Value
Approximation [8.993237527071756]
We introduce Behavioral Cloning Value Approximation (BCVA), an approach to learning a state value function based on and trained jointly with a Behavioral Cloning policy.
We demonstrate the effectiveness of BCVA by applying it to the challenging mobile manipulation task of latched-door opening.
arXiv Detail & Related papers (2023-02-08T20:56:23Z) - Active Uncertainty Learning for Human-Robot Interaction: An Implicit
Dual Control Approach [5.05828899601167]
We present an algorithmic approach to enable uncertainty learning for human-in-the-loop motion planning based on the implicit dual control paradigm.
Our approach relies on sampling-based approximation of dynamic programming model predictive control problem.
The resulting policy is shown to preserve the dual control effect for generic human predictive models with both continuous and categorical uncertainty.
arXiv Detail & Related papers (2022-02-15T20:40:06Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Human-in-the-Loop Imitation Learning using Remote Teleoperation [72.2847988686463]
We build a data collection system tailored to 6-DoF manipulation settings.
We develop an algorithm to train the policy iteratively on new data collected by the system.
We demonstrate that agents trained on data collected by our intervention-based system and algorithm outperform agents trained on an equivalent number of samples collected by non-interventional demonstrators.
arXiv Detail & Related papers (2020-12-12T05:30:35Z) - AvE: Assistance via Empowerment [77.08882807208461]
We propose a new paradigm for assistance by instead increasing the human's ability to control their environment.
This task-agnostic objective preserves the person's autonomy and ability to achieve any eventual state.
arXiv Detail & Related papers (2020-06-26T04:40:11Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state.
reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline.
arXiv Detail & Related papers (2020-05-21T19:47:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.