Sustainable AI: Mathematical Foundations of Spiking Neural Networks
- URL: http://arxiv.org/abs/2503.02013v1
- Date: Mon, 03 Mar 2025 19:44:12 GMT
- Title: Sustainable AI: Mathematical Foundations of Spiking Neural Networks
- Authors: Adalbert Fono, Manjot Singh, Ernesto Araya, Philipp C. Petersen, Holger Boche, Gitta Kutyniok,
- Abstract summary: Spiking neural networks, inspired by biological neurons, offer a promising alternative with potential computational and energy-efficiency gains.<n>This article examines the computational properties of spiking networks through the lens of learning theory.
- Score: 46.76155269576732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning's success comes with growing energy demands, raising concerns about the long-term sustainability of the field. Spiking neural networks, inspired by biological neurons, offer a promising alternative with potential computational and energy-efficiency gains. This article examines the computational properties of spiking networks through the lens of learning theory, focusing on expressivity, training, and generalization, as well as energy-efficient implementations while comparing them to artificial neural networks. By categorizing spiking models based on time representation and information encoding, we highlight their strengths, challenges, and potential as an alternative computational paradigm.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Toward Large-scale Spiking Neural Networks: A Comprehensive Survey and Future Directions [38.20628045367021]
spiking neural networks (SNNs) promise energy-efficient computation with event-driven spikes.
We present a survey of existing methods for developing deep spiking neural networks, with a focus on emerging Spiking Transformers.
arXiv Detail & Related papers (2024-08-19T13:07:48Z) - Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
Spiking Neural Networks (SNNs) represent the forefront of neuromorphic computing.
This paper weaves together three groundbreaking studies that revolutionize SNN performance.
arXiv Detail & Related papers (2024-07-08T23:33:12Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Advanced Computing and Related Applications Leveraging Brain-inspired
Spiking Neural Networks [0.0]
Spiking neural network is one of the cores of artificial intelligence which realizes brain-like computing.
This paper summarizes the strengths, weaknesses and applicability of five neuronal models and analyzes the characteristics of five network topologies.
arXiv Detail & Related papers (2023-09-08T16:41:08Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - A Comprehensive Review of Spiking Neural Networks: Interpretation,
Optimization, Efficiency, and Best Practices [0.0]
spiking neural networks have potential for low-power, mobile, or otherwise hardware-constrained settings.
We present a literature review of recent developments in the interpretation, optimization, efficiency, and accuracy of spiking neural networks.
arXiv Detail & Related papers (2023-03-19T22:07:27Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.