Interactive Debugging and Steering of Multi-Agent AI Systems
- URL: http://arxiv.org/abs/2503.02068v1
- Date: Mon, 03 Mar 2025 21:42:54 GMT
- Title: Interactive Debugging and Steering of Multi-Agent AI Systems
- Authors: Will Epperson, Gagan Bansal, Victor Dibia, Adam Fourney, Jack Gerrits, Erkang Zhu, Saleema Amershi,
- Abstract summary: Fully autonomous teams of LLM-powered AI agents are emerging that collaborate to perform complex tasks for users.<n>What challenges do developers face when trying to build and debug these AI agent teams?<n>In formative interviews with five AI agent developers, we identify core challenges: difficulty reviewing long agent conversations to localize errors, lack of support in current tools for interactive debug, and the need for tool support to iterate on agent configuration.<n>Based on these needs, we developed an interactive multi-agent debug tool, AG Debugger, with a UI for browsing and sending messages, the ability to edit and reset prior agent messages, and an overview visualization
- Score: 25.84430269055025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fully autonomous teams of LLM-powered AI agents are emerging that collaborate to perform complex tasks for users. What challenges do developers face when trying to build and debug these AI agent teams? In formative interviews with five AI agent developers, we identify core challenges: difficulty reviewing long agent conversations to localize errors, lack of support in current tools for interactive debugging, and the need for tool support to iterate on agent configuration. Based on these needs, we developed an interactive multi-agent debugging tool, AGDebugger, with a UI for browsing and sending messages, the ability to edit and reset prior agent messages, and an overview visualization for navigating complex message histories. In a two-part user study with 14 participants, we identify common user strategies for steering agents and highlight the importance of interactive message resets for debugging. Our studies deepen understanding of interfaces for debugging increasingly important agentic workflows.
Related papers
- A Desideratum for Conversational Agents: Capabilities, Challenges, and Future Directions [51.96890647837277]
Large Language Models (LLMs) have propelled conversational AI from traditional dialogue systems into sophisticated agents capable of autonomous actions, contextual awareness, and multi-turn interactions with users.
This survey paper presents a desideratum for next-generation Conversational Agents - what has been achieved, what challenges persist, and what must be done for more scalable systems that approach human-level intelligence.
arXiv Detail & Related papers (2025-04-07T21:01:25Z) - Multi-Agent Actor-Critic Generative AI for Query Resolution and Analysis [1.0124625066746598]
We introduce MASQRAD, a transformative framework for query resolution based on the actor-critic model.<n> MASQRAD is excellent at translating imprecise or ambiguous user inquiries into precise and actionable requests.<n> MASQRAD functions as a sophisticated multi-agent system but "masquerades" to users as a single AI entity.
arXiv Detail & Related papers (2025-02-17T04:03:15Z) - YETI (YET to Intervene) Proactive Interventions by Multimodal AI Agents in Augmented Reality Tasks [16.443149180969776]
Augmented Reality (AR) head worn devices can uniquely improve the user experience of solving procedural day-to-day tasks.<n>Such AR capabilities can help AI Agents see and listen to actions that users take which can relate to multimodal capabilities of human users.<n>Proactivity of AI Agents on the other hand can help the human user detect and correct any mistakes in agent observed tasks.
arXiv Detail & Related papers (2025-01-16T08:06:02Z) - Challenges in Human-Agent Communication [55.53932430345333]
We identify and analyze twelve key communication challenges that these systems pose.<n>These include challenges in conveying information from the agent to the user, challenges in enabling the user to convey information to the agent, and overarching challenges that need to be considered across all human-agent communication.<n>Our findings serve as an urgent call for new design patterns, principles, and guidelines to support transparency and control in these systems.
arXiv Detail & Related papers (2024-11-28T01:21:26Z) - SPA-Bench: A Comprehensive Benchmark for SmartPhone Agent Evaluation [89.24729958546168]
We present SPA-B ENCH, a comprehensive SmartPhone Agent Benchmark designed to evaluate (M)LLM-based agents.<n> SPA-B ENCH offers three key contributions: (1) A diverse set of tasks covering system and third-party apps in both English and Chinese, focusing on features commonly used in daily routines; (2) A plug-and-play framework enabling real-time agent interaction with Android devices; and (3) A novel evaluation pipeline that automatically assesses agent performance across multiple dimensions.
arXiv Detail & Related papers (2024-10-19T17:28:48Z) - A Survey on Complex Tasks for Goal-Directed Interactive Agents [60.53915548970061]
This survey compiles relevant tasks and environments for evaluating goal-directed interactive agents.
An up-to-date compilation of relevant resources can be found on our project website.
arXiv Detail & Related papers (2024-09-27T08:17:53Z) - AutoGen Studio: A No-Code Developer Tool for Building and Debugging Multi-Agent Systems [31.113305753414913]
AUTOGEN STUDIO is a no-code developer tool for rapidly prototyping multi-agent systems.
It provides an intuitive drag-and-drop UI for agent specification, interactive evaluation, and a gallery of reusable agent components.
arXiv Detail & Related papers (2024-08-09T03:27:37Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScope is a developer-centric multi-agent platform with message exchange as its core communication mechanism.
The abundant syntactic tools, built-in agents and service functions, user-friendly interfaces for application demonstration and utility monitor, zero-code programming workstation, and automatic prompt tuning mechanism significantly lower the barriers to both development and deployment.
arXiv Detail & Related papers (2024-02-21T04:11:28Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
Current language model-driven agents often lack mechanisms for effective user participation, which is crucial given the vagueness commonly found in user instructions.
We introduce Intention-in-Interaction (IN3), a novel benchmark designed to inspect users' implicit intentions through explicit queries.
We empirically train Mistral-Interact, a powerful model that proactively assesses task vagueness, inquires user intentions, and refines them into actionable goals.
arXiv Detail & Related papers (2024-02-14T14:36:30Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgents is an innovative framework that adaptively generates and coordinates multiple specialized agents to build an AI team according to different tasks.
Our experiments on various benchmarks demonstrate that AutoAgents generates more coherent and accurate solutions than the existing multi-agent methods.
arXiv Detail & Related papers (2023-09-29T14:46:30Z) - Agents: An Open-source Framework for Autonomous Language Agents [98.91085725608917]
We consider language agents as a promising direction towards artificial general intelligence.
We release Agents, an open-source library with the goal of opening up these advances to a wider non-specialist audience.
arXiv Detail & Related papers (2023-09-14T17:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.