Aerial Infrared Health Monitoring of Solar Photovoltaic Farms at Scale
- URL: http://arxiv.org/abs/2503.02128v1
- Date: Mon, 03 Mar 2025 23:32:21 GMT
- Title: Aerial Infrared Health Monitoring of Solar Photovoltaic Farms at Scale
- Authors: Isaac Corley, Conor Wallace, Sourav Agrawal, Burton Putrah, Jonathan Lwowski,
- Abstract summary: Solar photovoltaic (PV) farms represent a major source of global renewable energy generation, yet their true operational efficiency often remains unknown at scale.<n>We present a comprehensive, data-driven framework for large-scale airborne infrared inspection of North American solar installations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solar photovoltaic (PV) farms represent a major source of global renewable energy generation, yet their true operational efficiency often remains unknown at scale. In this paper, we present a comprehensive, data-driven framework for large-scale airborne infrared inspection of North American solar installations. Leveraging high-resolution thermal imagery, we construct and curate a geographically diverse dataset encompassing thousands of PV sites, enabling machine learning-based detection and localization of defects that are not detectable in the visible spectrum. Our pipeline integrates advanced image processing, georeferencing, and airborne thermal infrared anomaly detection to provide rigorous estimates of performance losses. We highlight practical considerations in aerial data collection, annotation methodologies, and model deployment across a wide range of environmental and operational conditions. Our work delivers new insights into the reliability of large-scale solar assets and serves as a foundation for ongoing research on performance trends, predictive maintenance, and scalable analytics in the renewable energy sector.
Related papers
- Risk-Based Thresholding for Reliable Anomaly Detection in Concentrated Solar Power Plants [2.048226951354646]
High-temperature solar receivers face severe operational risks, such as freezing, deformation, and corrosion.
Cameras mounted on solar receivers record infrared images at irregular intervals ranging from one to five minutes throughout the day.
Anomalous images can be detected by thresholding an anomaly score, where the threshold is chosen to optimize metrics such as the F1-score.
This work proposes a framework for generating more reliable decision thresholds with finite-sample coverage guarantees on any chosen risk function.
arXiv Detail & Related papers (2025-03-24T21:02:20Z) - SolNet: Open-source deep learning models for photovoltaic power forecasting across the globe [0.0]
SolNet is a novel, general-purpose, multivariate solar power forecaster.
We show that SolNet improves forecasting performance over data-scarce settings.
We provide guidelines and considerations for transfer learning practitioners.
arXiv Detail & Related papers (2024-05-23T12:00:35Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Unveiling the Invisible: Enhanced Detection and Analysis of Deteriorated
Areas in Solar PV Modules Using Unsupervised Sensing Algorithms and 3D
Augmented Reality [1.0310343700363547]
This article presents a groundbreaking methodology for automatically identifying and analyzing anomalies like hot spots and snail trails in Solar Photovoltaic (PV) modules.
By transforming the traditional methods of diagnosis and repair, our approach not only enhances efficiency but also substantially cuts down the cost of PV system maintenance.
Our immediate objective is to leverage drone technology for real-time, automatic solar panel detection, significantly boosting the efficacy of PV maintenance.
arXiv Detail & Related papers (2023-07-11T09:27:00Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Identification of Surface Defects on Solar PV Panels and Wind Turbine
Blades using Attention based Deep Learning Model [0.0]
The detection of surface defects on renewable energy assets is crucial for maintaining the performance and efficiency of these plants.
This paper proposes an innovative detection framework to achieve an economical surface monitoring system for renewable energy assets.
High-resolution images of the assets are captured regularly and inspected to identify surface or structural damages on solar panels and wind turbine blades.
arXiv Detail & Related papers (2022-11-23T04:02:35Z) - A Multi-Stage model based on YOLOv3 for defect detection in PV panels
based on IR and Visible Imaging by Unmanned Aerial Vehicle [65.99880594435643]
We propose a novel model to detect panel defects on aerial images captured by unmanned aerial vehicle.
The model combines detections of panels and defects to refine its accuracy.
The proposed model has been validated on two big PV plants in the south of Italy.
arXiv Detail & Related papers (2021-11-23T08:04:32Z) - A Large-Scale, Time-Synchronized Visible and Thermal Face Dataset [62.193924313292875]
We present the DEVCOM Army Research Laboratory Visible-Thermal Face dataset (ARL-VTF)
With over 500,000 images from 395 subjects, the ARL-VTF dataset represents to the best of our knowledge, the largest collection of paired visible and thermal face images to date.
This paper presents benchmark results and analysis on thermal face landmark detection and thermal-to-visible face verification by evaluating state-of-the-art models on the ARL-VTF dataset.
arXiv Detail & Related papers (2021-01-07T17:17:12Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.