Trace of the Times: Rootkit Detection through Temporal Anomalies in Kernel Activity
- URL: http://arxiv.org/abs/2503.02402v1
- Date: Tue, 04 Mar 2025 08:43:38 GMT
- Title: Trace of the Times: Rootkit Detection through Temporal Anomalies in Kernel Activity
- Authors: Max Landauer, Leonhard Alton, Martina Lindorfer, Florian Skopik, Markus Wurzenberger, Wolfgang Hotwagner,
- Abstract summary: Kernel rootkits enable stealthy operation and are thus difficult to detect.<n>Existing detection approaches rely on signatures that are unable to detect novel rootkits or require domain knowledge about the rootkits to be detected.<n>Our framework injects probes into the kernel to measure time stamps of functions within relevant system calls, computes distributions of function execution times, and uses statistical tests to detect time shifts.<n>The evaluation of our open-source implementation on publicly available data sets indicates high detection accuracy with an F1 score of 98.7% across five scenarios with varying system states.
- Score: 2.900892566337075
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Kernel rootkits provide adversaries with permanent high-privileged access to compromised systems and are often a key element of sophisticated attack chains. At the same time, they enable stealthy operation and are thus difficult to detect. Thereby, they inject code into kernel functions to appear invisible to users, for example, by manipulating file enumerations. Existing detection approaches are insufficient, because they rely on signatures that are unable to detect novel rootkits or require domain knowledge about the rootkits to be detected. To overcome this challenge, our approach leverages the fact that runtimes of kernel functions targeted by rootkits increase when additional code is executed. The framework outlined in this paper injects probes into the kernel to measure time stamps of functions within relevant system calls, computes distributions of function execution times, and uses statistical tests to detect time shifts. The evaluation of our open-source implementation on publicly available data sets indicates high detection accuracy with an F1 score of 98.7\% across five scenarios with varying system states.
Related papers
- Exploring Temporally-Aware Features for Point Tracking [58.63091479730935]
Chrono is a feature backbone specifically designed for point tracking with built-in temporal awareness.
Chrono achieves state-of-the-art performance in a refiner-free setting on the TAP-Vid-DAVIS and TAP-Vid-Kinetics datasets.
arXiv Detail & Related papers (2025-01-21T15:39:40Z) - JITScanner: Just-in-Time Executable Page Check in the Linux Operating System [6.725792100548271]
JITScanner is developed as a Linux-oriented package built upon a Loadable Kernel Module (LKM)
It integrates a user-level component that communicates efficiently with the LKM using scalable multi-processor/core technology.
JITScanner's effectiveness in detecting malware programs and its minimal intrusion in normal runtime scenarios have been extensively tested.
arXiv Detail & Related papers (2024-04-25T17:00:08Z) - GuardFS: a File System for Integrated Detection and Mitigation of Linux-based Ransomware [8.576433180938004]
GuardFS is a file system-based approach to investigate the integration of detection and mitigation of ransomware.
Using a bespoke overlay file system, data is extracted before files are accessed.
Models trained on this data are used by three novel defense configurations that obfuscate, delay, or track access to the file system.
arXiv Detail & Related papers (2024-01-31T15:33:29Z) - A Spatial-Temporal Deformable Attention based Framework for Breast
Lesion Detection in Videos [107.96514633713034]
We propose a spatial-temporal deformable attention based framework, named STNet.
Our STNet introduces a spatial-temporal deformable attention module to perform local spatial-temporal feature fusion.
Experiments on the public breast lesion ultrasound video dataset show that our STNet obtains a state-of-the-art detection performance.
arXiv Detail & Related papers (2023-09-09T07:00:10Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - Online Distribution Shift Detection via Recency Prediction [43.84609690251748]
We present an online method for detecting distribution shift with guarantees on the false positive rate.
Our system is very unlikely (with probability $ epsilon$) to falsely issue an alert when there is no distribution shift.
It empirically achieves up to 11x faster detection on realistic robotics settings compared to prior work.
arXiv Detail & Related papers (2022-11-17T22:29:58Z) - An Adaptive Black-box Backdoor Detection Method for Deep Neural Networks [25.593824693347113]
Deep Neural Networks (DNNs) have demonstrated unprecedented performance across various fields such as medical diagnosis and autonomous driving.
They are identified to be vulnerable to Neural Trojan (NT) attacks that are controlled and activated by stealthy triggers.
We propose a robust and adaptive Trojan detection scheme that inspects whether a pre-trained model has been Trojaned before its deployment.
arXiv Detail & Related papers (2022-04-08T23:41:19Z) - Realtime Robust Malicious Traffic Detection via Frequency Domain
Analysis [14.211671196458477]
We propose Whisper, a realtime ML based malicious traffic detection system that achieves both high accuracy and high throughput.
Our experiments with 42 types of attacks demonstrate that Whisper can accurately detect various sophisticated and stealthy attacks, achieving at most 18.36% improvement.
Even under various evasion attacks, Whisper is still able to maintain around 90% detection accuracy.
arXiv Detail & Related papers (2021-06-28T13:38:05Z) - Isolation Distributional Kernel: A New Tool for Point & Group Anomaly
Detection [76.1522587605852]
Isolation Distributional Kernel (IDK) is a new way to measure the similarity between two distributions.
We demonstrate IDK's efficacy and efficiency as a new tool for kernel based anomaly detection for both point and group anomalies.
arXiv Detail & Related papers (2020-09-24T12:25:43Z) - Real-Time Anomaly Detection in Edge Streams [49.26098240310257]
We propose MIDAS, which focuses on detecting microcluster anomalies, or suddenly arriving groups of suspiciously similar edges.
We further propose MIDAS-F, to solve the problem by which anomalies are incorporated into the algorithm's internal states.
Experiments show that MIDAS-F has significantly higher accuracy than MIDAS.
arXiv Detail & Related papers (2020-09-17T17:59:27Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z) - An Intelligent and Time-Efficient DDoS Identification Framework for
Real-Time Enterprise Networks SAD-F: Spark Based Anomaly Detection Framework [0.5811502603310248]
We will be exploring security analytic techniques for DDoS anomaly detection using different machine learning techniques.
In this paper, we are proposing a novel approach which deals with real traffic as input to the system.
We study and compare the performance factor of our proposed framework on three different testbeds.
arXiv Detail & Related papers (2020-01-21T06:05:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.