Weight transport through spike timing for robust local gradients
- URL: http://arxiv.org/abs/2503.02642v1
- Date: Tue, 04 Mar 2025 14:05:39 GMT
- Title: Weight transport through spike timing for robust local gradients
- Authors: Timo Gierlich, Andreas Baumbach, Akos F. Kungl, Kevin Max, Mihai A. Petrovici,
- Abstract summary: plasticity in functional neural networks is frequently expressed as gradient descent on a cost.<n>This imposes symmetry constraints that are difficult to reconcile with local computation.<n>We introduce spike-based alignment learning, which uses spike timing statistics to extract and correct the asymmetry between effective reciprocal connections.
- Score: 0.5236468296934584
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In both machine learning and in computational neuroscience, plasticity in functional neural networks is frequently expressed as gradient descent on a cost. Often, this imposes symmetry constraints that are difficult to reconcile with local computation, as is required for biological networks or neuromorphic hardware. For example, wake-sleep learning in networks characterized by Boltzmann distributions builds on the assumption of symmetric connectivity. Similarly, the error backpropagation algorithm is notoriously plagued by the weight transport problem between the representation and the error stream. Existing solutions such as feedback alignment tend to circumvent the problem by deferring to the robustness of these algorithms to weight asymmetry. However, they are known to scale poorly with network size and depth. We introduce spike-based alignment learning (SAL), a complementary learning rule for spiking neural networks, which uses spike timing statistics to extract and correct the asymmetry between effective reciprocal connections. Apart from being spike-based and fully local, our proposed mechanism takes advantage of noise. Based on an interplay between Hebbian and anti-Hebbian plasticity, synapses can thereby recover the true local gradient. This also alleviates discrepancies that arise from neuron and synapse variability -- an omnipresent property of physical neuronal networks. We demonstrate the efficacy of our mechanism using different spiking network models. First, we show how SAL can significantly improve convergence to the target distribution in probabilistic spiking networks as compared to Hebbian plasticity alone. Second, in neuronal hierarchies based on cortical microcircuits, we show how our proposed mechanism effectively enables the alignment of feedback weights to the forward pathway, thus allowing the backpropagation of correct feedback errors.
Related papers
- Dissecting a Small Artificial Neural Network [0.0]
We investigate the loss landscape and backpropagation dynamics of convergence for the simplest possible artificial neural network representing the logical exclusive-OR (XOR) gate.
Cross-sections of the loss landscape in the nine-dimensional parameter space are found to exhibit distinct features, which help understand why backpropagation achieves convergence toward zero loss.
arXiv Detail & Related papers (2025-01-03T21:14:46Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Improving equilibrium propagation without weight symmetry through Jacobian homeostasis [7.573586022424398]
Equilibrium propagation (EP) is a compelling alternative to the backpropagation of error algorithm (BP)
EP requires weight symmetry and infinitesimal equilibrium perturbations, i.e., nudges, to estimate unbiased gradients efficiently.
We show that the finite nudge does not pose a problem, as exact derivatives can still be estimated via a Cauchy integral.
We present a new homeostatic objective that directly mitigates functional asymmetries of the Jacobian at the network's fixed point.
arXiv Detail & Related papers (2023-09-05T13:20:43Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Machine learning in and out of equilibrium [58.88325379746631]
Our study uses a Fokker-Planck approach, adapted from statistical physics, to explore these parallels.
We focus in particular on the stationary state of the system in the long-time limit, which in conventional SGD is out of equilibrium.
We propose a new variation of Langevin dynamics (SGLD) that harnesses without replacement minibatching.
arXiv Detail & Related papers (2023-06-06T09:12:49Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - An error-propagation spiking neural network compatible with neuromorphic
processors [2.432141667343098]
We present a spike-based learning method that approximates back-propagation using local weight update mechanisms.
We introduce a network architecture that enables synaptic weight update mechanisms to back-propagate error signals.
This work represents a first step towards the design of ultra-low power mixed-signal neuromorphic processing systems.
arXiv Detail & Related papers (2021-04-12T07:21:08Z) - EqSpike: Spike-driven Equilibrium Propagation for Neuromorphic
Implementations [9.952561670370804]
We develop a spiking neural network algorithm called EqSpike, compatible with neuromorphic systems.
We show that EqSpike implemented in silicon neuromorphic technology could reduce the energy consumption of inference and training respectively.
arXiv Detail & Related papers (2020-10-15T16:25:29Z) - Optimizing Mode Connectivity via Neuron Alignment [84.26606622400423]
Empirically, the local minima of loss functions can be connected by a learned curve in model space along which the loss remains nearly constant.
We propose a more general framework to investigate effect of symmetry on landscape connectivity by accounting for the weight permutations of networks being connected.
arXiv Detail & Related papers (2020-09-05T02:25:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.