A Generalized Theory of Mixup for Structure-Preserving Synthetic Data
- URL: http://arxiv.org/abs/2503.02645v1
- Date: Mon, 03 Mar 2025 14:28:50 GMT
- Title: A Generalized Theory of Mixup for Structure-Preserving Synthetic Data
- Authors: Chungpa Lee, Jongho Im, Joseph H. T. Kim,
- Abstract summary: We show that mixup can distort key statistical properties such as variance, potentially leading to unintended consequences in data synthesis.<n>We propose a novel mixup method that incorporates a generalized and flexible weighting scheme, better preserving the original data's structure.<n> Numerical experiments confirm that the new approach not only preserves the statistical characteristics of the original data but also sustains model performance across repeated synthesis.
- Score: 2.184775414778289
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Mixup is a widely adopted data augmentation technique known for enhancing the generalization of machine learning models by interpolating between data points. Despite its success and popularity, limited attention has been given to understanding the statistical properties of the synthetic data it generates. In this paper, we delve into the theoretical underpinnings of mixup, specifically its effects on the statistical structure of synthesized data. We demonstrate that while mixup improves model performance, it can distort key statistical properties such as variance, potentially leading to unintended consequences in data synthesis. To address this, we propose a novel mixup method that incorporates a generalized and flexible weighting scheme, better preserving the original data's structure. Through theoretical developments, we provide conditions under which our proposed method maintains the (co)variance and distributional properties of the original dataset. Numerical experiments confirm that the new approach not only preserves the statistical characteristics of the original data but also sustains model performance across repeated synthesis, alleviating concerns of model collapse identified in previous research.
Related papers
- Conditional Data Synthesis Augmentation [4.3108820946281945]
Conditional Data Synthesis Augmentation (CoDSA) is a novel framework that synthesizes high-fidelity data for improving model performance across multimodal domains.
CoDSA fine-tunes pre-trained generative models to enhance the realism of synthetic data and increase sample density in sparse areas.
We introduce a theoretical framework that quantifies the statistical accuracy improvements enabled by CoDSA as a function of synthetic sample volume and targeted region allocation.
arXiv Detail & Related papers (2025-04-10T03:38:11Z) - Scaling Laws of Synthetic Data for Language Models [132.67350443447611]
We introduce SynthLLM, a scalable framework that transforms pre-training corpora into diverse, high-quality synthetic datasets.
Our approach achieves this by automatically extracting and recombining high-level concepts across multiple documents using a graph algorithm.
arXiv Detail & Related papers (2025-03-25T11:07:12Z) - A Theoretical Perspective: How to Prevent Model Collapse in Self-consuming Training Loops [55.07063067759609]
High-quality data is essential for training large generative models, yet the vast reservoir of real data available online has become nearly depleted.<n>Models increasingly generate their own data for further training, forming Self-consuming Training Loops (STLs)<n>Some models degrade or even collapse, while others successfully avoid these failures, leaving a significant gap in theoretical understanding.
arXiv Detail & Related papers (2025-02-26T06:18:13Z) - Golden Ratio Mixing of Real and Synthetic Data for Stabilizing Generative Model Training [9.087950471621653]
Recent studies identified a phenomenon in generative model training known as model collapse, where models trained on data generated by previous models exhibit severe performance degradation.<n>We investigate this phenomenon theoretically within a novel framework, where generative models are iteratively trained on a combination of newly collected real data and synthetic data from the previous training step.
arXiv Detail & Related papers (2025-02-25T10:15:16Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
We propose DistDiff, a training-free data expansion framework based on the distribution-aware diffusion model.
DistDiff consistently enhances accuracy across a diverse range of datasets compared to models trained solely on original data.
arXiv Detail & Related papers (2024-03-11T14:07:53Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - Boosting Data Analytics With Synthetic Volume Expansion [3.568650932986342]
This article explores the effectiveness of statistical methods on synthetic data and the privacy risks of synthetic data.
A key finding within this framework is the generational effect, which reveals that the error rate of statistical methods on synthetic data decreases with the addition of more synthetic data but may eventually rise or stabilize.
arXiv Detail & Related papers (2023-10-27T01:57:27Z) - Perturbation-Assisted Sample Synthesis: A Novel Approach for Uncertainty
Quantification [3.175239447683357]
This paper introduces a novel Perturbation-Assisted Inference (PAI) framework utilizing synthetic data generated by the Perturbation-Assisted Sample Synthesis (PASS) method.
The framework focuses on uncertainty quantification in complex data scenarios, particularly involving unstructured data.
We demonstrate the effectiveness of PAI in advancing uncertainty quantification in complex, data-driven tasks by applying it to diverse areas such as image synthesis, sentiment word analysis, multimodal inference, and the construction of prediction intervals.
arXiv Detail & Related papers (2023-05-30T01:01:36Z) - Utility Theory of Synthetic Data Generation [12.511220449652384]
This paper bridges the practice-theory gap by establishing relevant utility theory in a statistical learning framework.
It considers two utility metrics: generalization and ranking of models trained on synthetic data.
arXiv Detail & Related papers (2023-05-17T07:49:16Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.