InSerter: Speech Instruction Following with Unsupervised Interleaved Pre-training
- URL: http://arxiv.org/abs/2503.02769v1
- Date: Tue, 04 Mar 2025 16:34:14 GMT
- Title: InSerter: Speech Instruction Following with Unsupervised Interleaved Pre-training
- Authors: Dingdong Wang, Jin Xu, Ruihang Chu, Zhifang Guo, Xiong Wang, Jincenzi Wu, Dongchao Yang, Shengpeng Ji, Junyang Lin,
- Abstract summary: In this paper, we introduce a simple and scalable training method called InSerter, which stands for Interleaved Speech-Text Representation Pre-training.<n>InSerter is designed to pre-train large-scale unsupervised speech-text sequences, where the speech is synthesized from randomly selected segments of an extensive text corpus using text-to-speech conversion.<n>Our proposed InSerter achieves SOTA performance in SpeechInstructBench and demonstrates superior or competitive results across diverse speech processing tasks.
- Score: 23.330297074014315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in speech large language models (SpeechLLMs) have attracted considerable attention. Nonetheless, current methods exhibit suboptimal performance in adhering to speech instructions. Notably, the intelligence of models significantly diminishes when processing speech-form input as compared to direct text-form input. Prior work has attempted to mitigate this semantic inconsistency between speech and text representations through techniques such as representation and behavior alignment, which involve the meticulous design of data pairs during the post-training phase. In this paper, we introduce a simple and scalable training method called InSerter, which stands for Interleaved Speech-Text Representation Pre-training. InSerter is designed to pre-train large-scale unsupervised speech-text sequences, where the speech is synthesized from randomly selected segments of an extensive text corpus using text-to-speech conversion. Consequently, the model acquires the ability to generate textual continuations corresponding to the provided speech segments, obviating the need for intensive data design endeavors. To systematically evaluate speech instruction-following capabilities, we introduce SpeechInstructBench, the first comprehensive benchmark specifically designed for speech-oriented instruction-following tasks. Our proposed InSerter achieves SOTA performance in SpeechInstructBench and demonstrates superior or competitive results across diverse speech processing tasks.
Related papers
- Scaling Speech-Text Pre-training with Synthetic Interleaved Data [31.77653849518526]
Speech language models (SpeechLMs) accept speech input and produce speech output, allowing for more natural human-computer interaction.<n>Traditional approaches for developing SpeechLMs are constrained by the limited availability of unsupervised speech data and parallel speech-text data.<n>We propose a novel approach to scaling speech-text pre-training by leveraging large-scale synthetic interleaved data derived from text corpora.
arXiv Detail & Related papers (2024-11-26T17:19:09Z) - token2vec: A Joint Self-Supervised Pre-training Framework Using Unpaired
Speech and Text [65.04385919645395]
token2vec is a novel joint pre-training framework for unpaired speech and text based on discrete representations of speech.
Experiments show that token2vec is significantly superior to various speech-only pre-training baselines, with up to 17.7% relative WER reduction.
arXiv Detail & Related papers (2022-10-30T06:38:19Z) - SpeechUT: Bridging Speech and Text with Hidden-Unit for Encoder-Decoder
Based Speech-Text Pre-training [106.34112664893622]
We propose a unified-modal speech-unit-text pre-training model, SpeechUT, to connect the representations of a speech encoder and a text decoder with a shared unit encoder.
Our proposed SpeechUT is fine-tuned and evaluated on automatic speech recognition (ASR) and speech translation (ST) tasks.
arXiv Detail & Related papers (2022-10-07T17:57:45Z) - SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data [100.46303484627045]
We propose a cross-modal Speech and Language Model (SpeechLM) to align speech and text pre-training with a pre-defined unified representation.
Specifically, we introduce two alternative discrete tokenizers to bridge the speech and text modalities.
We evaluate SpeechLM on various spoken language processing tasks including speech recognition, speech translation, and universal representation evaluation framework SUPERB.
arXiv Detail & Related papers (2022-09-30T09:12:10Z) - ESSumm: Extractive Speech Summarization from Untranscribed Meeting [7.309214379395552]
We propose a novel architecture for direct extractive speech-to-speech summarization, ESSumm.
We leverage the off-the-shelf self-supervised convolutional neural network to extract the deep speech features from raw audio.
Our approach automatically predicts the optimal sequence of speech segments that capture the key information with a target summary length.
arXiv Detail & Related papers (2022-09-14T20:13:15Z) - Unified Speech-Text Pre-training for Speech Translation and Recognition [113.31415771943162]
We describe a method to jointly pre-train speech and text in an encoder-decoder modeling framework for speech translation and recognition.
The proposed method incorporates four self-supervised and supervised subtasks for cross modality learning.
It achieves between 1.7 and 2.3 BLEU improvement above the state of the art on the MuST-C speech translation dataset.
arXiv Detail & Related papers (2022-04-11T20:59:51Z) - SLAM: A Unified Encoder for Speech and Language Modeling via Speech-Text
Joint Pre-Training [33.02912456062474]
We build a single encoder with the BERT objective on unlabeled text together with the w2v-BERT objective on unlabeled speech.
We demonstrate that incorporating both speech and text data during pre-training can significantly improve downstream quality on CoVoST2 speech translation.
arXiv Detail & Related papers (2021-10-20T00:59:36Z) - Direct speech-to-speech translation with discrete units [64.19830539866072]
We present a direct speech-to-speech translation (S2ST) model that translates speech from one language to speech in another language without relying on intermediate text generation.
We propose to predict the self-supervised discrete representations learned from an unlabeled speech corpus instead.
When target text transcripts are available, we design a multitask learning framework with joint speech and text training that enables the model to generate dual mode output (speech and text) simultaneously in the same inference pass.
arXiv Detail & Related papers (2021-07-12T17:40:43Z) - Bridging the Modality Gap for Speech-to-Text Translation [57.47099674461832]
End-to-end speech translation aims to translate speech in one language into text in another language via an end-to-end way.
Most existing methods employ an encoder-decoder structure with a single encoder to learn acoustic representation and semantic information simultaneously.
We propose a Speech-to-Text Adaptation for Speech Translation model which aims to improve the end-to-end model performance by bridging the modality gap between speech and text.
arXiv Detail & Related papers (2020-10-28T12:33:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.