Spike-and-Slab Posterior Sampling in High Dimensions
- URL: http://arxiv.org/abs/2503.02798v1
- Date: Tue, 04 Mar 2025 17:16:07 GMT
- Title: Spike-and-Slab Posterior Sampling in High Dimensions
- Authors: Syamantak Kumar, Purnamrita Sarkar, Kevin Tian, Yusong Zhu,
- Abstract summary: Posterior sampling with the spike-and-slab prior [MB88] is considered the theoretical gold standard method for Bayesian sparse linear regression.<n>We give the first provable algorithms for spike-and-slab posterior sampling that apply for any SNR, and use a measurement count sub in the problem dimension.<n>We extend our result to spike-and-slab posterior sampling with Laplace diffuse densities, achieving similar guarantees when $sigma = O(frac1k)$ is bounded.
- Score: 11.458504242206862
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Posterior sampling with the spike-and-slab prior [MB88], a popular multimodal distribution used to model uncertainty in variable selection, is considered the theoretical gold standard method for Bayesian sparse linear regression [CPS09, Roc18]. However, designing provable algorithms for performing this sampling task is notoriously challenging. Existing posterior samplers for Bayesian sparse variable selection tasks either require strong assumptions about the signal-to-noise ratio (SNR) [YWJ16], only work when the measurement count grows at least linearly in the dimension [MW24], or rely on heuristic approximations to the posterior. We give the first provable algorithms for spike-and-slab posterior sampling that apply for any SNR, and use a measurement count sublinear in the problem dimension. Concretely, assume we are given a measurement matrix $\mathbf{X} \in \mathbb{R}^{n\times d}$ and noisy observations $\mathbf{y} = \mathbf{X}\mathbf{\theta}^\star + \mathbf{\xi}$ of a signal $\mathbf{\theta}^\star$ drawn from a spike-and-slab prior $\pi$ with a Gaussian diffuse density and expected sparsity k, where $\mathbf{\xi} \sim \mathcal{N}(\mathbb{0}_n, \sigma^2\mathbf{I}_n)$. We give a polynomial-time high-accuracy sampler for the posterior $\pi(\cdot \mid \mathbf{X}, \mathbf{y})$, for any SNR $\sigma^{-1}$ > 0, as long as $n \geq k^3 \cdot \text{polylog}(d)$ and $X$ is drawn from a matrix ensemble satisfying the restricted isometry property. We further give a sampler that runs in near-linear time $\approx nd$ in the same setting, as long as $n \geq k^5 \cdot \text{polylog}(d)$. To demonstrate the flexibility of our framework, we extend our result to spike-and-slab posterior sampling with Laplace diffuse densities, achieving similar guarantees when $\sigma = O(\frac{1}{k})$ is bounded.
Related papers
- Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models [65.71506381302815]
We propose amortize the cost of sampling from a posterior distribution of the form $p(mathbfxmidmathbfy) propto p_theta(mathbfx)$.<n>For many models and constraints of interest, the posterior in the noise space is smoother than the posterior in the data space, making it more amenable to such amortized inference.
arXiv Detail & Related papers (2025-02-10T19:49:54Z) - Robust Scatter Matrix Estimation for Elliptical Distributions in Polynomial Time [2.311583680973075]
We design time algorithms that achieve dimension-independent error in Frobenius norm.<n>Under a mild assumption on the eigenvalues of the scatter matrix $Sigma$, for every $t in mathbbN$, we design an estimator that, given $n = dO(t)$ samples, in time $nO(t)$ finds $hatSigma.
arXiv Detail & Related papers (2025-02-10T15:31:57Z) - Variable Selection in Convex Piecewise Linear Regression [5.366354612549172]
This paper presents Sparse Gradient as a solution for variable selection in convex piecewise linear regression.
A non-asymptotic local convergence analysis is provided for SpGD under subGaussian noise.
arXiv Detail & Related papers (2024-11-04T16:19:09Z) - Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
Previous private estimators on distributions over $mathRd suffer from a curse of dimensionality.
We present an algorithm whose sample complexity has improved dependence on dimension.
arXiv Detail & Related papers (2024-11-01T17:59:53Z) - Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - (Nearly) Optimal Private Linear Regression via Adaptive Clipping [22.639650869444395]
We study the problem of differentially private linear regression where each data point is sampled from a fixed sub-Gaussian style distribution.
We propose and analyze a one-pass mini-batch gradient descent method (DP-AMBSSGD) where points in each iteration are sampled without replacement.
arXiv Detail & Related papers (2022-07-11T08:04:46Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.<n>We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Beyond Independent Measurements: General Compressed Sensing with GNN
Application [4.924126492174801]
We consider the problem of recovering a structured signal $mathbfx in mathbbRn$ from noisy cone observations.
We show that the effective rank of $mathbfB$ may be used as a surrogate for the number of measurements.
arXiv Detail & Related papers (2021-10-30T20:35:56Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - Non-Parametric Estimation of Manifolds from Noisy Data [1.0152838128195467]
We consider the problem of estimating a $d$ dimensional sub-manifold of $mathbbRD$ from a finite set of noisy samples.
We show that the estimation yields rates of convergence of $n-frack2k + d$ for the point estimation and $n-frack-12k + d$ for the estimation of tangent space.
arXiv Detail & Related papers (2021-05-11T02:29:33Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Efficient Statistics for Sparse Graphical Models from Truncated Samples [19.205541380535397]
We focus on two fundamental and classical problems: (i) inference of sparse Gaussian graphical models and (ii) support recovery of sparse linear models.
For sparse linear regression, suppose samples $(bf x,y)$ are generated where $y = bf xtopOmega* + mathcalN(0,1)$ and $(bf x, y)$ is seen only if $y$ belongs to a truncation set $S subseteq mathbbRd$.
arXiv Detail & Related papers (2020-06-17T09:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.