AlignDistil: Token-Level Language Model Alignment as Adaptive Policy Distillation
- URL: http://arxiv.org/abs/2503.02832v1
- Date: Tue, 04 Mar 2025 17:57:09 GMT
- Title: AlignDistil: Token-Level Language Model Alignment as Adaptive Policy Distillation
- Authors: Songming Zhang, Xue Zhang, Tong Zhang, Bojie Hu, Yufeng Chen, Jinan Xu,
- Abstract summary: We propose an RLHF-equivalent distillation method for token-level reward optimization.<n> Experimental results demonstrate the superiority of our AlignDistil over existing methods.
- Score: 46.72611855060883
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In modern large language models (LLMs), LLM alignment is of crucial importance and is typically achieved through methods such as reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO). However, in most existing methods for LLM alignment, all tokens in the response are optimized using a sparse, response-level reward or preference annotation. The ignorance of token-level rewards may erroneously punish high-quality tokens or encourage low-quality tokens, resulting in suboptimal performance and slow convergence speed. To address this issue, we propose AlignDistil, an RLHF-equivalent distillation method for token-level reward optimization. Specifically, we introduce the reward learned by DPO into the RLHF objective and theoretically prove the equivalence between this objective and a token-level distillation process, where the teacher distribution linearly combines the logits from the DPO model and a reference model. On this basis, we further bridge the accuracy gap between the reward from the DPO model and the pure reward model, by building a contrastive DPO reward with a normal and a reverse DPO model. Moreover, to avoid under- and over-optimization on different tokens, we design a token adaptive logit extrapolation mechanism to construct an appropriate teacher distribution for each token. Experimental results demonstrate the superiority of our AlignDistil over existing methods and showcase fast convergence due to its token-level distributional reward optimization.
Related papers
- Learning Explainable Dense Reward Shapes via Bayesian Optimization [45.34810347865996]
We frame reward shaping as an optimization problem focused on token-level credit assignment.
We use explainability methods such as SHAP and LIME to estimate per-token rewards from the reward model.
Our experiments show that achieving a better balance of token-level reward attribution leads to performance improvements over baselines.
arXiv Detail & Related papers (2025-04-22T21:09:33Z) - T-REG: Preference Optimization with Token-Level Reward Regularization [35.07328450591201]
Reinforcement learning from human feedback (RLHF) has been crucial in aligning large language models with human values.
Recent methods have attempted to address this limitation by introducing token-level rewards.
We propose token-level reward regularization (T-REG), a novel approach that leverages both sequence-level and token-level rewards for preference optimization.
arXiv Detail & Related papers (2024-12-03T18:56:07Z) - $α$-DPO: Adaptive Reward Margin is What Direct Preference Optimization Needs [45.46582930202524]
$alpha$-DPO is an adaptive preference optimization algorithm for large language models.
It balances the policy model and the reference model to achieve personalized reward margins.
It consistently outperforms DPO and SimPO across various model settings.
arXiv Detail & Related papers (2024-10-14T04:29:57Z) - TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights [73.9088920210495]
We propose a token-level importance sampling DPO objective named TIS-DPO that assigns importance weights to each token based on its reward.<n>TIS-DPO significantly outperforms various baseline methods on harmlessness and helpfulness alignment and summarization tasks.
arXiv Detail & Related papers (2024-10-06T04:03:00Z) - Aligning Large Language Models via Fine-grained Supervision [20.35000061196631]
Pre-trained large-scale language models (LLMs) excel at producing coherent articles, yet their outputs may be untruthful, toxic, or fail to align with user expectations.
Current approaches focus on using reinforcement learning with human feedback to improve model alignment.
We propose a method to enhance LLM alignment through fine-grained token-level supervision.
arXiv Detail & Related papers (2024-06-04T20:21:45Z) - Robust Preference Optimization through Reward Model Distillation [68.65844394615702]
Direct Preference Optimization (DPO) is a popular offline alignment method that trains a policy directly on preference data.<n>We analyze this phenomenon and use distillation to get a better proxy for the true preference distribution over generation pairs.<n>Our results show that distilling from such a family of reward models leads to improved robustness to distribution shift in preference annotations.
arXiv Detail & Related papers (2024-05-29T17:39:48Z) - From $r$ to $Q^*$: Your Language Model is Secretly a Q-Function [50.812404038684505]
We show that we can derive DPO in the token-level MDP as a general inverse Q-learning algorithm, which satisfies the Bellman equation.
We discuss applications of our work, including information elicitation in multi-turn dialogue, reasoning, agentic applications and end-to-end training of multi-model systems.
arXiv Detail & Related papers (2024-04-18T17:37:02Z) - Token-level Direct Preference Optimization [8.249403373337024]
Fine-tuning pre-trained Large Language Models is essential to align them with human values and intentions.
We introduce Token-level Direct Preference Optimization (TDPO), a novel approach to align LLMs with human preferences by optimizing policy at the token level.
arXiv Detail & Related papers (2024-04-18T08:49:38Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Dense Reward for Free in Reinforcement Learning from Human Feedback [64.92448888346125]
We leverage the fact that the reward model contains more information than just its scalar output.
We use these attention weights to redistribute the reward along the whole completion.
Empirically, we show that it stabilises training, accelerates the rate of learning, and, in practical cases, may lead to better local optima.
arXiv Detail & Related papers (2024-02-01T17:10:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.