One Model to Train them All: Hierarchical Self-Distillation for Enhanced Early Layer Embeddings
- URL: http://arxiv.org/abs/2503.03008v1
- Date: Tue, 04 Mar 2025 21:08:17 GMT
- Title: One Model to Train them All: Hierarchical Self-Distillation for Enhanced Early Layer Embeddings
- Authors: Andrea Gurioli, Federico Pennino, João Monteiro, Maurizio Gabbrielli,
- Abstract summary: We introduce MODULARSTARENCODER, a modular multi-exit encoder with 1B parameters, useful for multiple tasks within the scope of code retrieval.<n>Our architecture focuses on enhancing text-to-code and code-to-code search by systematically capturing syntactic and semantic structures.<n>We also release a new dataset constructed via code translation, seamlessly expanding traditional text-to-code benchmarks with code-to-code pairs across diverse programming languages.
- Score: 2.1262605464247812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deploying language models often requires handling model size vs. performance trade-offs to satisfy downstream latency constraints while preserving the model's usefulness. Model distillation is commonly employed to reduce model size while maintaining acceptable performance. However, distillation can be inefficient since it involves multiple training steps. In this work, we introduce MODULARSTARENCODER, a modular multi-exit encoder with 1B parameters, useful for multiple tasks within the scope of code retrieval. MODULARSTARENCODER is trained with a novel self-distillation mechanism that significantly improves lower-layer representations-allowing different portions of the model to be used while still maintaining a good trade-off in terms of performance. Our architecture focuses on enhancing text-to-code and code-to-code search by systematically capturing syntactic and semantic structures across multiple levels of representation. Specific encoder layers are targeted as exit heads, allowing higher layers to guide earlier layers during training. This self-distillation effect improves intermediate representations, increasing retrieval recall at no extra training cost. In addition to the multi-exit scheme, our approach integrates a repository-level contextual loss that maximally utilizes the training context window, further enhancing the learned representations. We also release a new dataset constructed via code translation, seamlessly expanding traditional text-to-code benchmarks with code-to-code pairs across diverse programming languages. Experimental results highlight the benefits of self-distillation through multi-exit supervision.
Related papers
- EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
We propose EmbedLLM, a framework designed to learn compact vector representations of Large Language Models.
We introduce an encoder-decoder approach for learning such embeddings, along with a systematic framework to evaluate their effectiveness.
Empirical results show that EmbedLLM outperforms prior methods in model routing both in accuracy and latency.
arXiv Detail & Related papers (2024-10-03T05:43:24Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Toward Exploring the Code Understanding Capabilities of Pre-trained Code Generation Models [12.959392500354223]
We pioneer the transfer of knowledge from pre-trained code generation models to code understanding tasks.
We introduce CL4D, a contrastive learning method designed to enhance the representation capabilities of decoder-only models.
arXiv Detail & Related papers (2024-06-18T06:52:14Z) - Code Representation Learning At Scale [75.04686476303436]
We fuel code representation learning with a vast amount of code data via a two-stage pretraining scheme.
We first train the encoders via a mix that leverages both randomness in masking language modeling and the structure aspect of programming language.
We then enhance the representations via contrastive learning with hard negative and hard positive constructed in an unsupervised manner.
arXiv Detail & Related papers (2024-02-02T22:19:15Z) - Dynamic Perceiver for Efficient Visual Recognition [87.08210214417309]
We propose Dynamic Perceiver (Dyn-Perceiver) to decouple the feature extraction procedure and the early classification task.
A feature branch serves to extract image features, while a classification branch processes a latent code assigned for classification tasks.
Early exits are placed exclusively within the classification branch, thus eliminating the need for linear separability in low-level features.
arXiv Detail & Related papers (2023-06-20T03:00:22Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
Large language models (LLMs) pretrained on vast source code have achieved prominent progress in code intelligence.
CodeT5+ is a family of encoder-decoder LLMs for code in which component modules can be flexibly combined to suit a wide range of downstream code tasks.
We extensively evaluate CodeT5+ on over 20 code-related benchmarks in different settings, including zero-shot, finetuning, and instruction-tuning.
arXiv Detail & Related papers (2023-05-13T14:23:07Z) - Towards Efficient Fine-tuning of Pre-trained Code Models: An
Experimental Study and Beyond [52.656743602538825]
Fine-tuning pre-trained code models incurs a large computational cost.
We conduct an experimental study to explore what happens to layer-wise pre-trained representations and their encoded code knowledge during fine-tuning.
We propose Telly to efficiently fine-tune pre-trained code models via layer freezing.
arXiv Detail & Related papers (2023-04-11T13:34:13Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
We propose a new approach with multimodal contrastive learning and soft data augmentation for code search.
We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages.
arXiv Detail & Related papers (2022-04-07T08:49:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.