Interactive Segmentation and Report Generation for CT Images
- URL: http://arxiv.org/abs/2503.03294v1
- Date: Wed, 05 Mar 2025 09:18:27 GMT
- Title: Interactive Segmentation and Report Generation for CT Images
- Authors: Yannian Gu, Wenhui Lei, Hanyu Chen, Xiaofan Zhang, Shaoting Zhang,
- Abstract summary: We propose a novel interactive framework for 3D lesion morphology reporting.<n>We are the first to integrate the interactive segmentation and structured reports in 3D CT medical images.
- Score: 10.23242820828816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated CT report generation plays a crucial role in improving diagnostic accuracy and clinical workflow efficiency. However, existing methods lack interpretability and impede patient-clinician understanding, while their static nature restricts radiologists from dynamically adjusting assessments during image review. Inspired by interactive segmentation techniques, we propose a novel interactive framework for 3D lesion morphology reporting that seamlessly generates segmentation masks with comprehensive attribute descriptions, enabling clinicians to generate detailed lesion profiles for enhanced diagnostic assessment. To our best knowledge, we are the first to integrate the interactive segmentation and structured reports in 3D CT medical images. Experimental results across 15 lesion types demonstrate the effectiveness of our approach in providing a more comprehensive and reliable reporting system for lesion segmentation and capturing. The source code will be made publicly available following paper acceptance.
Related papers
- Causal Disentanglement for Robust Long-tail Medical Image Generation [80.15257897500578]
We propose a novel medical image generation framework, which generates independent pathological and structural features.
We leverage a diffusion model guided by pathological findings to model pathological features, enabling the generation of diverse counterfactual images.
arXiv Detail & Related papers (2025-04-20T01:54:18Z) - MvKeTR: Chest CT Report Generation with Multi-View Perception and Knowledge Enhancement [1.4680538148112467]
Multi-view perception knowledge-enhanced Transformer (MvKeTR)<n>MVPA with view-aware attention effectively synthesizes diagnostic information from multiple anatomical views.<n>Cross-Modal Knowledge Enhancer (CMKE) retrieves the most similar reports based on the query volume.
arXiv Detail & Related papers (2024-11-27T12:58:23Z) - A Multimodal Approach Combining Structural and Cross-domain Textual Guidance for Weakly Supervised OCT Segmentation [12.948027961485536]
We propose a novel Weakly Supervised Semantic (WSSS) approach that integrates structural guidance with text-driven strategies to generate high-quality pseudo labels.
Our method achieves state-of-the-art performance, highlighting its potential to improve diagnostic accuracy and efficiency in medical imaging.
arXiv Detail & Related papers (2024-11-19T16:20:27Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - SeATrans: Learning Segmentation-Assisted diagnosis model via Transforme [13.63128987400635]
We propose Vision-Assisted diagnosis Transformer (SeATrans) to transfer the segmentation knowledge to the disease diagnosis network.
We first propose an asymmetric multi-scale interaction strategy to correlate each single low-level diagnosis feature with multi-scale segmentation features.
To model the segmentation-diagnosis interaction, SeA-block first embeds the diagnosis feature based on the segmentation information via the encoder, and then transfers the embedding back to the diagnosis feature space by a decoder.
arXiv Detail & Related papers (2022-06-12T15:10:33Z) - Interactive Medical Image Segmentation with Self-Adaptive Confidence
Calibration [10.297081695050457]
This paper proposes an interactive segmentation framework, called interactive MEdical segmentation with self-adaptive Confidence CAlibration (MECCA)
The evaluation is established through a novel action-based confidence network, and the corrective actions are obtained from MARL.
Experimental results on various medical image datasets have shown the significant performance of the proposed algorithm.
arXiv Detail & Related papers (2021-11-15T12:38:56Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.