Federated Learning for Predicting Mild Cognitive Impairment to Dementia Conversion
- URL: http://arxiv.org/abs/2503.03489v1
- Date: Wed, 05 Mar 2025 13:29:23 GMT
- Title: Federated Learning for Predicting Mild Cognitive Impairment to Dementia Conversion
- Authors: Gaurang Sharma, Elaheh Moradi, Juha Pajula, Mika Hilvo, Jussi Tohka,
- Abstract summary: This study proposes a privacy-enhancing solution using Federated Learning (FL) to train predictive models for dementia conversion without sharing sensitive data.<n>We simulated and compared two network architectures, Peer to Peer (P2P) and client-server, to enable collaborative learning.<n>Our results demonstrated that FL had comparable predictive performance to centralized Machine Learning, and each clinical site showed similar performance without sharing local data.
- Score: 0.1398098625978622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dementia is a progressive condition that impairs an individual's cognitive health and daily functioning, with mild cognitive impairment (MCI) often serving as its precursor. The prediction of MCI to dementia conversion has been well studied, but previous studies have almost always focused on traditional Machine Learning (ML) based methods that require sharing sensitive clinical information to train predictive models. This study proposes a privacy-enhancing solution using Federated Learning (FL) to train predictive models for MCI to dementia conversion without sharing sensitive data, leveraging socio demographic and cognitive measures. We simulated and compared two network architectures, Peer to Peer (P2P) and client-server, to enable collaborative learning. Our results demonstrated that FL had comparable predictive performance to centralized ML, and each clinical site showed similar performance without sharing local data. Moreover, the predictive performance of FL models was superior to site specific models trained without collaboration. This work highlights that FL can eliminate the need for data sharing without compromising model efficacy.
Related papers
- FedKBP: Federated dose prediction framework for knowledge-based planning in radiation therapy [0.5575343193009424]
Dose prediction plays a key role in knowledge-based planning (KBP) by automatically generating patient-specific dose distribution.<n>Recent advances in deep learning-based dose prediction methods necessitates collaboration among data contributors for improved performance.<n>Federation learning (FL) has emerged as a solution, enabling medical centers to jointly train deep-learning models without compromising patient data privacy.
arXiv Detail & Related papers (2024-08-17T14:57:14Z) - Benchmarking Collaborative Learning Methods Cost-Effectiveness for
Prostate Segmentation [39.19170617818745]
We address a prostate segmentation problem from MRI in a collaborative scenario.
To the best of our knowledge, this is the first work in which consensus-based methods (CBM) are used to solve a problem of collaborative learning.
arXiv Detail & Related papers (2023-09-29T09:47:18Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Federated Learning for Early Dropout Prediction on Healthy Ageing
Applications [0.0]
We present a federated machine learning (FML) approach that minimizes privacy concerns and enables distributed training, without transferring individual data.
Our results show that data selection and class imbalance handling techniques significantly improve the predictive accuracy of models trained under FML.
arXiv Detail & Related papers (2023-09-08T13:17:06Z) - Medical Federated Model with Mixture of Personalized and Sharing
Components [31.068735334318088]
We propose a new personalized framework of federated learning to handle the problem.
It successfully yields personalized models based on awareness of similarity between local data.
Also, we propose an effective method to reduce the computational cost, which improves computation efficiency significantly.
arXiv Detail & Related papers (2023-06-26T07:50:32Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Federated Pruning: Improving Neural Network Efficiency with Federated
Learning [24.36174705715827]
We propose Federated Pruning to train a reduced model under the federated setting.
We explore different pruning schemes and provide empirical evidence of the effectiveness of our methods.
arXiv Detail & Related papers (2022-09-14T00:48:37Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
Federated learning (FL) has been widely employed for medical image analysis.
FL's performance is limited for multiple sclerosis (MS) lesion segmentation tasks.
We propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms.
arXiv Detail & Related papers (2022-05-03T14:06:03Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.