CarGait: Cross-Attention based Re-ranking for Gait recognition
- URL: http://arxiv.org/abs/2503.03501v1
- Date: Wed, 05 Mar 2025 13:47:02 GMT
- Title: CarGait: Cross-Attention based Re-ranking for Gait recognition
- Authors: Gavriel Habib, Noa Barzilay, Or Shimshi, Rami Ben-Ari, Nir Darshan,
- Abstract summary: Gait recognition is a computer vision task that identifies individuals based on their walking patterns.<n>Existing models are typically single-staged, i.e. searching for the probe's nearest neighbors in a gallery.<n>We introduce CarGait, a Cross-Attention Re-ranking method for gait recognition.
- Score: 4.334105740533729
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Gait recognition is a computer vision task that identifies individuals based on their walking patterns. Gait recognition performance is commonly evaluated by ranking a gallery of candidates and measuring the accuracy at the top Rank-$K$. Existing models are typically single-staged, i.e. searching for the probe's nearest neighbors in a gallery using a single global feature representation. Although these models typically excel at retrieving the correct identity within the top-$K$ predictions, they struggle when hard negatives appear in the top short-list, leading to relatively low performance at the highest ranks (e.g., Rank-1). In this paper, we introduce CarGait, a Cross-Attention Re-ranking method for gait recognition, that involves re-ordering the top-$K$ list leveraging the fine-grained correlations between pairs of gait sequences through cross-attention between gait strips. This re-ranking scheme can be adapted to existing single-stage models to enhance their final results. We demonstrate the capabilities of CarGait by extensive experiments on three common gait datasets, Gait3D, GREW, and OU-MVLP, and seven different gait models, showing consistent improvements in Rank-1,5 accuracy, superior results over existing re-ranking methods, and strong baselines.
Related papers
- Advancing Adversarial Suffix Transfer Learning on Aligned Large Language Models [21.96773736059112]
Language Language Models (LLMs) face safety concerns due to potential misuse by malicious users.
Recent red-teaming efforts have identified adversarial suffixes capable of jailbreaking LLMs using the gradient-based search algorithm Greedy Coordinate Gradient (GCG)
We propose a two-stage transfer learning framework, DeGCG, which decouples the search process into behavior-agnostic pre-searching and behavior-relevant post-searching.
arXiv Detail & Related papers (2024-08-27T08:38:48Z) - Distillation-guided Representation Learning for Unconstrained Gait Recognition [50.0533243584942]
We propose a framework, termed GAit DEtection and Recognition (GADER), for human authentication in challenging outdoor scenarios.
GADER builds discriminative features through a novel gait recognition method, where only frames containing gait information are used.
We evaluate our method on multiple State-of-The-Arts(SoTA) gait baselines and demonstrate consistent improvements on indoor and outdoor datasets.
arXiv Detail & Related papers (2023-07-27T01:53:57Z) - Learning Gait Representation from Massive Unlabelled Walking Videos: A
Benchmark [11.948554539954673]
This paper proposes a large-scale self-supervised benchmark for gait recognition with contrastive learning.
We collect a large-scale unlabelled gait dataset GaitLU-1M consisting of 1.02M walking sequences.
We evaluate the pre-trained model on four widely-used gait benchmarks, CASIA-B, OU-M, GREW and Gait3D with or without transfer learning.
arXiv Detail & Related papers (2022-06-28T12:33:42Z) - Gait Recognition in the Wild: A Large-scale Benchmark and NAS-based
Baseline [95.88825497452716]
Gait benchmarks empower the research community to train and evaluate high-performance gait recognition systems.
GREW is the first large-scale dataset for gait recognition in the wild.
SPOSGait is the first NAS-based gait recognition model.
arXiv Detail & Related papers (2022-05-05T14:57:39Z) - GNNRank: Learning Global Rankings from Pairwise Comparisons via Directed
Graph Neural Networks [68.61934077627085]
We introduce GNNRank, a modeling framework compatible with any GNN capable of learning digraph embeddings.
We show that our methods attain competitive and often superior performance compared with existing approaches.
arXiv Detail & Related papers (2022-02-01T04:19:50Z) - Instance-Level Relative Saliency Ranking with Graph Reasoning [126.09138829920627]
We present a novel unified model to segment salient instances and infer relative saliency rank order.
A novel loss function is also proposed to effectively train the saliency ranking branch.
experimental results demonstrate that our proposed model is more effective than previous methods.
arXiv Detail & Related papers (2021-07-08T13:10:42Z) - SelfGait: A Spatiotemporal Representation Learning Method for
Self-supervised Gait Recognition [24.156710529672775]
Gait recognition plays a vital role in human identification since gait is a unique biometric feature that can be perceived at a distance.
Existing gait recognition methods can learn gait features from gait sequences in different ways, but the performance of gait recognition suffers from labeled data.
We propose a self-supervised gait recognition method, termed SelfGait, which takes advantage of the massive, diverse, unlabeled gait data as a pre-training process.
arXiv Detail & Related papers (2021-03-27T05:15:39Z) - Interpretable Learning-to-Rank with Generalized Additive Models [78.42800966500374]
Interpretability of learning-to-rank models is a crucial yet relatively under-examined research area.
Recent progress on interpretable ranking models largely focuses on generating post-hoc explanations for existing black-box ranking models.
We lay the groundwork for intrinsically interpretable learning-to-rank by introducing generalized additive models (GAMs) into ranking tasks.
arXiv Detail & Related papers (2020-05-06T01:51:30Z) - Document Ranking with a Pretrained Sequence-to-Sequence Model [56.44269917346376]
We show how a sequence-to-sequence model can be trained to generate relevance labels as "target words"
Our approach significantly outperforms an encoder-only model in a data-poor regime.
arXiv Detail & Related papers (2020-03-14T22:29:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.