OTTER: A Vision-Language-Action Model with Text-Aware Visual Feature Extraction
- URL: http://arxiv.org/abs/2503.03734v3
- Date: Wed, 26 Mar 2025 17:55:06 GMT
- Title: OTTER: A Vision-Language-Action Model with Text-Aware Visual Feature Extraction
- Authors: Huang Huang, Fangchen Liu, Letian Fu, Tingfan Wu, Mustafa Mukadam, Jitendra Malik, Ken Goldberg, Pieter Abbeel,
- Abstract summary: Vision-Language-Action (VLA) models aim to predict robotic actions based on visual observations and language instructions.<n>Existing approaches require fine-tuning pre-trained vision-language models (VLMs) as visual and language features are independently fed into downstream policies.<n>We propose OTTER, a novel VLA architecture that leverages existing alignments through explicit, text-aware visual feature extraction.
- Score: 95.6266030753644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-Language-Action (VLA) models aim to predict robotic actions based on visual observations and language instructions. Existing approaches require fine-tuning pre-trained visionlanguage models (VLMs) as visual and language features are independently fed into downstream policies, degrading the pre-trained semantic alignments. We propose OTTER, a novel VLA architecture that leverages these existing alignments through explicit, text-aware visual feature extraction. Instead of processing all visual features, OTTER selectively extracts and passes only task-relevant visual features that are semantically aligned with the language instruction to the policy transformer. This allows OTTER to keep the pre-trained vision-language encoders frozen. Thereby, OTTER preserves and utilizes the rich semantic understanding learned from large-scale pre-training, enabling strong zero-shot generalization capabilities. In simulation and real-world experiments, OTTER significantly outperforms existing VLA models, demonstrating strong zeroshot generalization to novel objects and environments. Video, code, checkpoints, and dataset: https://ottervla.github.io/.
Related papers
- CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-Language-Action Models [89.44024245194315]
We introduce a method that incorporates explicit visual chain-of-thought (CoT) reasoning into vision-language-action models (VLAs)
We introduce CoT-VLA, a state-of-the-art 7B VLA that can understand and generate visual and action tokens.
Our experimental results demonstrate that CoT-VLA achieves strong performance, outperforming the state-of-the-art VLA model by 17% in real-world manipulation tasks and 6% in simulation benchmarks.
arXiv Detail & Related papers (2025-03-27T22:23:04Z) - HoVLE: Unleashing the Power of Monolithic Vision-Language Models with Holistic Vision-Language Embedding [91.0552157725366]
This paper presents a novel high-performance monolithic VLM named HoVLE.
It converts visual and textual inputs into a shared space, allowing LLMs to process images in the same way as texts.
Our experiments show that HoVLE achieves performance close to leading compositional models on various benchmarks.
arXiv Detail & Related papers (2024-12-20T18:59:59Z) - FILS: Self-Supervised Video Feature Prediction In Semantic Language Space [11.641926922266347]
This paper demonstrates a self-supervised approach for learning semantic video representations.
We present FILS, a novel self-supervised video Feature prediction In semantic Language Space.
arXiv Detail & Related papers (2024-06-05T16:44:06Z) - Memory-Space Visual Prompting for Efficient Vision-Language Fine-Tuning [59.13366859237086]
Current solutions for efficiently constructing large vision-language (VL) models follow a two-step paradigm.
We consider visual prompts as additional knowledge that facilitates language models in addressing tasks associated with visual information.
We introduce a novel approach, wherein visual prompts are memoryd with the weights of FFN for visual knowledge injection.
arXiv Detail & Related papers (2024-05-09T08:23:20Z) - Unified Language-Vision Pretraining in LLM with Dynamic Discrete Visual Tokenization [52.935150075484074]
We introduce a well-designed visual tokenizer to translate the non-linguistic image into a sequence of discrete tokens like a foreign language.
The resulting visual tokens encompass high-level semantics worthy of a word and also support dynamic sequence length varying from the image.
This unification empowers LaVIT to serve as an impressive generalist interface to understand and generate multi-modal content simultaneously.
arXiv Detail & Related papers (2023-09-09T03:01:38Z) - LIV: Language-Image Representations and Rewards for Robotic Control [37.12560985663822]
We present a unified objective for vision-language representation and reward learning from action-free videos with text annotations.
We use LIV to pre-train the first control-centric vision-language representation from large human video datasets such as EpicKitchen.
Our results validate the advantages of joint vision-language representation and reward learning within the unified, compact LIV framework.
arXiv Detail & Related papers (2023-06-01T17:52:23Z) - Visually-augmented pretrained language models for NLP tasks without
images [77.74849855049523]
Existing solutions often rely on explicit images for visual knowledge augmentation.
We propose a novel textbfVisually-textbfAugmented fine-tuning approach.
Our approach can consistently improve the performance of BERT, RoBERTa, BART, and T5 at different scales.
arXiv Detail & Related papers (2022-12-15T16:13:25Z) - Align and Prompt: Video-and-Language Pre-training with Entity Prompts [111.23364631136339]
Video-and-language pre-training has shown promising improvements on various downstream tasks.
We propose Align and Prompt: an efficient and effective video-and-language pre-training framework with better cross-modal alignment.
Our code and pre-trained models will be released.
arXiv Detail & Related papers (2021-12-17T15:55:53Z) - Learning Visual Representations with Caption Annotations [19.24013129952071]
We propose a proxy task to learn visual representations over image-caption pairs.
ICMLM consists in predicting masked words in captions by relying on visual cues.
Our experiments confirm that image captions can be leveraged to inject global and localized semantic information into visual representations.
arXiv Detail & Related papers (2020-08-04T08:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.