Constrained Gaussian Wasserstein Optimal Transport with Commutative Covariance Matrices
- URL: http://arxiv.org/abs/2503.03744v1
- Date: Wed, 05 Mar 2025 18:56:48 GMT
- Title: Constrained Gaussian Wasserstein Optimal Transport with Commutative Covariance Matrices
- Authors: Jun Chen, Jia Wang, Ruibin Li, Han Zhou, Wei Dong, Huan Liu, Yuanhao Yu,
- Abstract summary: We consider three types of constraints, motivated by perception-aware lossy compression, generative principal component analysis, and deep joint source-channel coding.<n>We derive explicit results for the minimum achievable mean squared error under the three aforementioned constraints.
- Score: 24.878352716406418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal transport has found widespread applications in signal processing and machine learning. Among its many equivalent formulations, optimal transport seeks to reconstruct a random variable/vector with a prescribed distribution at the destination while minimizing the expected distortion relative to a given random variable/vector at the source. However, in practice, certain constraints may render the optimal transport plan infeasible. In this work, we consider three types of constraints: rate constraints, dimension constraints, and channel constraints, motivated by perception-aware lossy compression, generative principal component analysis, and deep joint source-channel coding, respectively. Special attenion is given to the setting termed Gaussian Wasserstein optimal transport, where both the source and reconstruction variables are multivariate Gaussian, and the end-to-end distortion is measured by the mean squared error. We derive explicit results for the minimum achievable mean squared error under the three aforementioned constraints when the covariance matrices of the source and reconstruction variables commute.
Related papers
- Refined Risk Bounds for Unbounded Losses via Transductive Priors [58.967816314671296]
We revisit the sequential variants of linear regression with the squared loss, classification problems with hinge loss, and logistic regression.<n>Our key tools are based on the exponential weights algorithm with carefully chosen transductive priors.
arXiv Detail & Related papers (2024-10-29T00:01:04Z) - Variance-Reducing Couplings for Random Features [57.73648780299374]
Random features (RFs) are a popular technique to scale up kernel methods in machine learning.
We find couplings to improve RFs defined on both Euclidean and discrete input spaces.
We reach surprising conclusions about the benefits and limitations of variance reduction as a paradigm.
arXiv Detail & Related papers (2024-05-26T12:25:09Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Convex Parameter Estimation of Perturbed Multivariate Generalized
Gaussian Distributions [18.95928707619676]
We propose a convex formulation with well-established properties for MGGD parameters.
The proposed framework is flexible as it combines a variety of regularizations for the precision matrix, the mean and perturbations.
Experiments show a more accurate precision and covariance matrix estimation with similar performance for the mean vector parameter.
arXiv Detail & Related papers (2023-12-12T18:08:04Z) - On the Computation of the Gaussian Rate-Distortion-Perception Function [10.564071872770146]
We study the computation of the rate-distortion-perception function (RDPF) for a multivariate Gaussian source under mean squared error (MSE) distortion.
We provide the associated algorithmic realization, as well as the convergence and the rate of convergence characterization.
We corroborate our results with numerical simulations and draw connections to existing results.
arXiv Detail & Related papers (2023-11-15T18:34:03Z) - Arbitrary Distributions Mapping via SyMOT-Flow: A Flow-based Approach Integrating Maximum Mean Discrepancy and Optimal Transport [2.7309692684728617]
We introduce a novel model called SyMOT-Flow that trains an invertible transformation by minimizing the symmetric maximum mean discrepancy between samples from two unknown distributions.
The resulting transformation leads to more stable and accurate sample generation.
arXiv Detail & Related papers (2023-08-26T08:39:16Z) - Learning Optimal Transport Between two Empirical Distributions with
Normalizing Flows [12.91637880428221]
We propose to leverage the flexibility of neural networks to learn an approximate optimal transport map.
We show that a particular instance of invertible neural networks, namely the normalizing flows, can be used to approximate the solution of this OT problem.
arXiv Detail & Related papers (2022-07-04T08:08:47Z) - Fast Batch Nuclear-norm Maximization and Minimization for Robust Domain
Adaptation [154.2195491708548]
We study the prediction discriminability and diversity by studying the structure of the classification output matrix of a randomly selected data batch.
We propose Batch Nuclear-norm Maximization and Minimization, which performs nuclear-norm on the target output matrix to enhance the target prediction ability.
Experiments show that our method could boost the adaptation accuracy and robustness under three typical domain adaptation scenarios.
arXiv Detail & Related papers (2021-07-13T15:08:32Z) - Semi-Discrete Optimal Transport: Hardness, Regularization and Numerical
Solution [8.465228064780748]
We prove that computing the Wasserstein distance between a discrete probability measure supported on two points is already #P-hard.
We introduce a distributionally robust dual optimal transport problem whose objective function is smoothed with the most adverse disturbance distributions.
We show that smoothing the dual objective function is equivalent to regularizing the primal objective function.
arXiv Detail & Related papers (2021-03-10T18:53:59Z) - Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization [106.70006655990176]
A distributional optimization problem arises widely in machine learning and statistics.
We propose a novel particle-based algorithm, dubbed as variational transport, which approximately performs Wasserstein gradient descent.
We prove that when the objective function satisfies a functional version of the Polyak-Lojasiewicz (PL) (Polyak, 1963) and smoothness conditions, variational transport converges linearly.
arXiv Detail & Related papers (2020-12-21T18:33:13Z) - Neural Control Variates [71.42768823631918]
We show that a set of neural networks can face the challenge of finding a good approximation of the integrand.
We derive a theoretically optimal, variance-minimizing loss function, and propose an alternative, composite loss for stable online training in practice.
Specifically, we show that the learned light-field approximation is of sufficient quality for high-order bounces, allowing us to omit the error correction and thereby dramatically reduce the noise at the cost of negligible visible bias.
arXiv Detail & Related papers (2020-06-02T11:17:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.