ReasonGraph: Visualisation of Reasoning Paths
- URL: http://arxiv.org/abs/2503.03979v1
- Date: Thu, 06 Mar 2025 00:03:55 GMT
- Title: ReasonGraph: Visualisation of Reasoning Paths
- Authors: Zongqian Li, Ehsan Shareghi, Nigel Collier,
- Abstract summary: ReasonGraph is a web-based platform for visualizing and analyzing Large Language Models (LLMs) reasoning processes.<n>It supports both sequential and tree-based reasoning methods while integrating with major LLM providers and over fifty state-of-the-art models.
- Score: 28.906801344540458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) reasoning processes are challenging to analyze due to their complexity and the lack of organized visualization tools. We present ReasonGraph, a web-based platform for visualizing and analyzing LLM reasoning processes. It supports both sequential and tree-based reasoning methods while integrating with major LLM providers and over fifty state-of-the-art models. ReasonGraph incorporates an intuitive UI with meta reasoning method selection, configurable visualization parameters, and a modular framework that facilitates efficient extension. Our evaluation shows high parsing reliability, efficient processing, and strong usability across various downstream applications. By providing a unified visualization framework, ReasonGraph reduces cognitive load in analyzing complex reasoning paths, improves error detection in logical processes, and enables more effective development of LLM-based applications. The platform is open-source, promoting accessibility and reproducibility in LLM reasoning analysis.
Related papers
- GraphOmni: A Comprehensive and Extendable Benchmark Framework for Large Language Models on Graph-theoretic Tasks [15.147178364098034]
We present Graph Omni, a benchmark framework for evaluating graph reasoning capabilities of LLMs.
Our findings emphasize that no single serialization or prompting strategy consistently outperforms others.
Motivated by these insights, we propose a reinforcement learning-based approach that dynamically selects the best serialization-prompt pairings.
arXiv Detail & Related papers (2025-04-17T09:01:16Z) - A Survey of Scaling in Large Language Model Reasoning [62.92861523305361]
We provide a comprehensive examination of scaling in large Language models (LLMs) reasoning.
We analyze scaling in reasoning steps that improves multi-step inference and logical consistency.
We discuss scaling in training-enabled reasoning, focusing on optimization through iterative model improvement.
arXiv Detail & Related papers (2025-04-02T23:51:27Z) - Visualizing Thought: Conceptual Diagrams Enable Robust Planning in LMMs [57.66267515456075]
Large Language Models (LLMs) and Large Multimodal Models (LMMs) predominantly reason through textual representations.
We propose a zero-shot fully automatic framework that enables LMMs to reason through multiple chains of self-generated conceptual diagrams.
arXiv Detail & Related papers (2025-03-14T18:27:02Z) - Rewarding Graph Reasoning Process makes LLMs more Generalized Reasoners [30.195361623027313]
Process Reward Models (PRMs) have demonstrated exceptional promise in enhancing reasoning by providing step-wise feedback.<n>We introduce GraphSILO, the largest dataset for graph reasoning problems with fine-grained step-wise labels.<n>We train GraphPRM, the first PRM designed for graph reasoning problems, and evaluate its effectiveness in two key settings.
arXiv Detail & Related papers (2025-03-02T10:39:40Z) - Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning [73.2950349728376]
Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks.<n>However, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between pieces of information.<n>This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering.<n>We propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context.
arXiv Detail & Related papers (2025-01-14T05:18:20Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - Reversal of Thought: Enhancing Large Language Models with Preference-Guided Reverse Reasoning Warm-up [9.42385235462794]
Large language models (LLMs) have shown remarkable performance in reasoning tasks but face limitations in mathematical and complex logical reasoning.
We propose Reversal of Thought (RoT) to enhance the logical reasoning abilities of LLMs during the warm-up phase prior to batch inference.
RoT utilizes a Preference-Guided Reverse Reasoning warm-up strategy, which integrates logical symbols for pseudocode planning.
arXiv Detail & Related papers (2024-10-16T07:44:28Z) - Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data [53.433309883370974]
This work explores the potential and limitations of using graph-based synthetic reasoning data as training signals to enhance Large Language Models' reasoning capabilities.<n>Our experiments, conducted on two established natural language reasoning tasks, demonstrate that supervised fine-tuning with synthetic graph-based reasoning data effectively enhances LLMs' reasoning performance without compromising their effectiveness on other standard evaluation benchmarks.
arXiv Detail & Related papers (2024-09-19T03:39:09Z) - Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
We propose a curriculum-based logical-aware instruction tuning framework, named LACT.<n>Specifically, we augment the arbitrary first-order logical queries via binary tree decomposition.<n> Experiments across widely used datasets demonstrate that LACT has substantial improvements(brings an average +5.5% MRR score) over advanced methods, achieving the new state-of-the-art.
arXiv Detail & Related papers (2024-05-02T18:12:08Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - GraphReason: Enhancing Reasoning Capabilities of Large Language Models through A Graph-Based Verification Approach [0.0]
Large Language Models (LLMs) have showcased impressive reasoning capabilities.
In this paper, we introduce a novel graph-based method to further augment the reasoning capabilities of LLMs.
arXiv Detail & Related papers (2023-08-18T03:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.