H3O: Hyper-Efficient 3D Occupancy Prediction with Heterogeneous Supervision
- URL: http://arxiv.org/abs/2503.04059v1
- Date: Thu, 06 Mar 2025 03:27:14 GMT
- Title: H3O: Hyper-Efficient 3D Occupancy Prediction with Heterogeneous Supervision
- Authors: Yunxiao Shi, Hong Cai, Amin Ansari, Fatih Porikli,
- Abstract summary: We present a novel 3D occupancy prediction approach, H3O, which features highly efficient architecture designs that incur a significantly lower computational cost as compared to the current state-of-the-art methods.<n>In particular, we integrate multi-camera depth estimation, semantic segmentation, and surface normal estimation via differentiable volume rendering, supervised by corresponding 2D labels.
- Score: 41.529084775662355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D occupancy prediction has recently emerged as a new paradigm for holistic 3D scene understanding and provides valuable information for downstream planning in autonomous driving. Most existing methods, however, are computationally expensive, requiring costly attention-based 2D-3D transformation and 3D feature processing. In this paper, we present a novel 3D occupancy prediction approach, H3O, which features highly efficient architecture designs that incur a significantly lower computational cost as compared to the current state-of-the-art methods. In addition, to compensate for the ambiguity in ground-truth 3D occupancy labels, we advocate leveraging auxiliary tasks to complement the direct 3D supervision. In particular, we integrate multi-camera depth estimation, semantic segmentation, and surface normal estimation via differentiable volume rendering, supervised by corresponding 2D labels that introduces rich and heterogeneous supervision signals. We conduct extensive experiments on the Occ3D-nuScenes and SemanticKITTI benchmarks that demonstrate the superiority of our proposed H3O.
Related papers
- DGOcc: Depth-aware Global Query-based Network for Monocular 3D Occupancy Prediction [17.38916914453357]
Predicting the 3D occupancy of large-scale outdoor scenes from 2D images is ill-posed and resource-intensive.
We present textbfDGOcc, a textbfGlobal query-based network for monocular 3D textbfOccupancy prediction.
The proposed method achieves the best performance on monocular semantic occupancy prediction while reducing GPU and time overhead.
arXiv Detail & Related papers (2025-04-10T07:44:55Z) - Bootstraping Clustering of Gaussians for View-consistent 3D Scene Understanding [59.51535163599723]
FreeGS is an unsupervised semantic-embedded 3DGS framework that achieves view-consistent 3D scene understanding without the need for 2D labels.
We show that FreeGS performs comparably to state-of-the-art methods while avoiding the complex data preprocessing workload.
arXiv Detail & Related papers (2024-11-29T08:52:32Z) - AdaOcc: Adaptive-Resolution Occupancy Prediction [20.0994984349065]
We introduce AdaOcc, a novel adaptive-resolution, multi-modal prediction approach.
Our method integrates object-centric 3D reconstruction and holistic occupancy prediction within a single framework.
In close-range scenarios, we surpass previous baselines by over 13% in IOU, and over 40% in Hausdorff distance.
arXiv Detail & Related papers (2024-08-24T03:46:25Z) - Semi-supervised 3D Semantic Scene Completion with 2D Vision Foundation Model Guidance [8.07701188057789]
We introduce a novel semi-supervised framework to alleviate the dependency on densely annotated data.<n>Our approach leverages 2D foundation models to generate essential 3D scene geometric and semantic cues.<n>Our method achieves up to 85% of the fully-supervised performance using only 10% labeled data.
arXiv Detail & Related papers (2024-08-21T12:13:18Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
This paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception.
Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone.
arXiv Detail & Related papers (2024-05-17T07:31:20Z) - OccFlowNet: Towards Self-supervised Occupancy Estimation via
Differentiable Rendering and Occupancy Flow [0.6577148087211809]
We present a novel approach to occupancy estimation inspired by neural radiance field (NeRF) using only 2D labels.
We employ differentiable volumetric rendering to predict depth and semantic maps and train a 3D network based on 2D supervision only.
arXiv Detail & Related papers (2024-02-20T08:04:12Z) - Regulating Intermediate 3D Features for Vision-Centric Autonomous
Driving [26.03800936700545]
We propose to regulate intermediate dense 3D features with the help of volume rendering.
Experimental results on the Occ3D and nuScenes datasets demonstrate that Vampire facilitates fine-grained and appropriate extraction of dense 3D features.
arXiv Detail & Related papers (2023-12-19T04:09:05Z) - NDC-Scene: Boost Monocular 3D Semantic Scene Completion in Normalized
Device Coordinates Space [77.6067460464962]
Monocular 3D Semantic Scene Completion (SSC) has garnered significant attention in recent years due to its potential to predict complex semantics and geometry shapes from a single image, requiring no 3D inputs.
We identify several critical issues in current state-of-the-art methods, including the Feature Ambiguity of projected 2D features in the ray to the 3D space, the Pose Ambiguity of the 3D convolution, and the Imbalance in the 3D convolution across different depth levels.
We devise a novel Normalized Device Coordinates scene completion network (NDC-Scene) that directly extends the 2
arXiv Detail & Related papers (2023-09-26T02:09:52Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.