Brain Tumor Detection in MRI Based on Federated Learning with YOLOv11
- URL: http://arxiv.org/abs/2503.04087v1
- Date: Thu, 06 Mar 2025 04:50:07 GMT
- Title: Brain Tumor Detection in MRI Based on Federated Learning with YOLOv11
- Authors: Sheikh Moonwara Anjum Monisha, Ratun Rahman,
- Abstract summary: Current machine learning approaches have two major limitations, data privacy and high latency.<n>We propose a federated learning architecture for a better accurate brain tumor detection incorporating the YOLOv11 algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: One of the primary challenges in medical diagnostics is the accurate and efficient use of magnetic resonance imaging (MRI) for the detection of brain tumors. But the current machine learning (ML) approaches have two major limitations, data privacy and high latency. To solve the problem, in this work we propose a federated learning architecture for a better accurate brain tumor detection incorporating the YOLOv11 algorithm. In contrast to earlier methods of centralized learning, our federated learning approach protects the underlying medical data while supporting cooperative deep learning model training across multiple institutions. To allow the YOLOv11 model to locate and identify tumor areas, we adjust it to handle MRI data. To ensure robustness and generalizability, the model is trained and tested on a wide range of MRI data collected from several anonymous medical facilities. The results indicate that our method significantly maintains higher accuracy than conventional approaches.
Related papers
- SKIPNet: Spatial Attention Skip Connections for Enhanced Brain Tumor Classification [3.8233569758620063]
Early detection of brain tumors is essential for timely treatment, yet access to diagnostic facilities remains limited in remote areas.<n>This study proposes an automated deep learning model for brain tumor detection and classification using MRI data.<n>The model, incorporating spatial attention, achieved 96.90% accuracy, enhancing the aggregation of contextual information for better pattern recognition.
arXiv Detail & Related papers (2024-12-10T18:32:42Z) - Empowering Healthcare through Privacy-Preserving MRI Analysis [3.6394715554048234]
We introduce the Ensemble-Based Federated Learning (EBFL) Framework.
EBFL framework deviates from the conventional approach by emphasizing model features over sharing sensitive patient data.
We have achieved remarkable precision in the classification of brain tumors, including glioma, meningioma, pituitary, and non-tumor instances.
arXiv Detail & Related papers (2024-03-14T19:51:18Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Deep Transfer Learning for Brain Magnetic Resonance Image Multi-class
Classification [0.6117371161379209]
We have developed a framework that uses Deep Transfer Learning to perform a multi-classification of tumors in the brain MRI images.
Using the novel dataset and two publicly available MRI brain datasets, this proposed approach attained a classification accuracy of 86.40%.
Results of our experiments significantly demonstrate our proposed framework for transfer learning is a potential and effective method for brain tumor multi-classification tasks.
arXiv Detail & Related papers (2021-06-14T12:19:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.