Prompt Programming: A Platform for Dialogue-based Computational Problem Solving with Generative AI Models
- URL: http://arxiv.org/abs/2503.04267v1
- Date: Thu, 06 Mar 2025 09:56:07 GMT
- Title: Prompt Programming: A Platform for Dialogue-based Computational Problem Solving with Generative AI Models
- Authors: Victor-Alexandru Pădurean, Paul Denny, Alkis Gotovos, Adish Singla,
- Abstract summary: Students increasingly rely on generative AI tools for programming assistance, often without formal instruction or guidance.<n>This highlights a need to teach students how to effectively interact with AI models.<n>We developed a novel platform for prompt programming that enables authentic dialogue-based interactions.
- Score: 22.339868419855904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computing students increasingly rely on generative AI tools for programming assistance, often without formal instruction or guidance. This highlights a need to teach students how to effectively interact with AI models, particularly through natural language prompts, to generate and critically evaluate code for solving computational tasks. To address this, we developed a novel platform for prompt programming that enables authentic dialogue-based interactions, supports problems involving multiple interdependent functions, and offers on-request execution of generated code. Data analysis from over 900 students in an introductory programming course revealed high engagement, with the majority of prompts occurring within multi-turn dialogues. Problems with multiple interdependent functions encouraged iterative refinement, with progression graphs highlighting several common strategies. Students were highly selective about the code they chose to test, suggesting that on-request execution of generated code promoted critical thinking. Given the growing importance of learning dialogue-based programming with AI, we provide this tool as a publicly accessible resource, accompanied by a corpus of programming problems for educational use.
Related papers
- Design of AI-Powered Tool for Self-Regulation Support in Programming Education [4.171227316909729]
Large Language Model (LLM) tools have demonstrated their potential to deliver high-quality assistance.
However, many of these tools operate independently from institutional Learning Management Systems.
This isolation limits the ability to leverage learning materials and exercise context for generating tailored, context-aware feedback.
arXiv Detail & Related papers (2025-04-03T22:47:33Z) - Integrating Natural Language Prompting Tasks in Introductory Programming Courses [3.907735250728617]
This report explores the inclusion of two prompt-focused activities in an introductory programming course.
The first requires students to solve computational problems by writing natural language prompts, emphasizing problem-solving over syntax.
The second involves students crafting prompts to generate code equivalent to provided fragments, to foster an understanding of the relationship between prompts and code.
arXiv Detail & Related papers (2024-10-04T01:03:25Z) - Motivations, Challenges, Best Practices, and Benefits for Bots and Conversational Agents in Software Engineering: A Multivocal Literature Review [14.84837870899906]
We aim to provide a taxonomy for characterizing bots, as well as a series of challenges for their adoption for Software Engineering.
To reach our objectives, we conducted a multivocal literature review, reviewing both research and practitioner's literature.
arXiv Detail & Related papers (2024-09-18T10:37:06Z) - ACES: Generating Diverse Programming Puzzles with with Autotelic Generative Models [20.039580079339537]
Autotelic CodE Search (ACES) jointly optimize for the diversity and difficulty of generated problems.
We represent problems in a space of semantic descriptors describing the programming skills required to solve them.
ACES iteratively prompts a large language model to generate difficult problems achieving a diversity of target semantic descriptors.
arXiv Detail & Related papers (2023-10-15T14:57:14Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
Chain-of-thought (CoT) prompting for language models demonstrates impressive performance across reasoning tasks.
We introduce a new prompting approach, analogical prompting, designed to automatically guide the reasoning process of large language models.
arXiv Detail & Related papers (2023-10-03T00:57:26Z) - PwR: Exploring the Role of Representations in Conversational Programming [17.838776812138626]
We introduce Programming with Representations (PwR), an approach that uses representations to convey the system's understanding back to the user in natural language.
We find that representations significantly improve understandability, and instilled a sense of agency among our participants.
arXiv Detail & Related papers (2023-09-18T05:38:23Z) - Promptly: Using Prompt Problems to Teach Learners How to Effectively
Utilize AI Code Generators [5.458849730200646]
This paper introduces a novel pedagogical concept known as a Prompt Problem'
A Prompt Problem challenges a student to create a natural language prompt that leads an LLM to produce the correct code for a specific problem.
We report empirical findings from a field study in which Promptly was deployed in a first-year Python programming course.
arXiv Detail & Related papers (2023-07-31T01:46:42Z) - ChatDev: Communicative Agents for Software Development [84.90400377131962]
ChatDev is a chat-powered software development framework in which specialized agents are guided in what to communicate.
These agents actively contribute to the design, coding, and testing phases through unified language-based communication.
arXiv Detail & Related papers (2023-07-16T02:11:34Z) - ChatPLUG: Open-Domain Generative Dialogue System with Internet-Augmented
Instruction Tuning for Digital Human [76.62897301298699]
ChatPLUG is a Chinese open-domain dialogue system for digital human applications that instruction finetunes on a wide range of dialogue tasks in a unified internet-augmented format.
We show that modelname outperforms state-of-the-art Chinese dialogue systems on both automatic and human evaluation.
We deploy modelname to real-world applications such as Smart Speaker and Instant Message applications with fast inference.
arXiv Detail & Related papers (2023-04-16T18:16:35Z) - A Case Study in Engineering a Conversational Programming Assistant's
Persona [72.47187215119664]
Conversational capability was achieved by using an existing code-fluent Large Language Model.
A discussion of the evolution of the prompt provides a case study in how to coax an existing foundation model to behave in a desirable manner for a particular application.
arXiv Detail & Related papers (2023-01-13T14:48:47Z) - A Conversational Paradigm for Program Synthesis [110.94409515865867]
We propose a conversational program synthesis approach via large language models.
We train a family of large language models, called CodeGen, on natural language and programming language data.
Our findings show the emergence of conversational capabilities and the effectiveness of the proposed conversational program synthesis paradigm.
arXiv Detail & Related papers (2022-03-25T06:55:15Z) - Few-Shot Bot: Prompt-Based Learning for Dialogue Systems [58.27337673451943]
Learning to converse using only a few examples is a great challenge in conversational AI.
The current best conversational models are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL)
We propose prompt-based few-shot learning which does not require gradient-based fine-tuning but instead uses a few examples as the only source of learning.
arXiv Detail & Related papers (2021-10-15T14:36:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.