Large Language Models in Bioinformatics: A Survey
- URL: http://arxiv.org/abs/2503.04490v1
- Date: Thu, 06 Mar 2025 14:38:20 GMT
- Title: Large Language Models in Bioinformatics: A Survey
- Authors: Zhenyu Wang, Zikang Wang, Jiyue Jiang, Pengan Chen, Xiangyu Shi, Yu Li,
- Abstract summary: Large Language Models (LLMs) are revolutionizing bioinformatics, enabling advanced analysis of DNA, RNA, proteins, and single-cell data.<n>This survey provides a systematic review of recent advancements, focusing on genomic sequence modeling, RNA structure prediction, protein function inference, and single-cell transcriptomics.
- Score: 13.722344139230827
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are revolutionizing bioinformatics, enabling advanced analysis of DNA, RNA, proteins, and single-cell data. This survey provides a systematic review of recent advancements, focusing on genomic sequence modeling, RNA structure prediction, protein function inference, and single-cell transcriptomics. Meanwhile, we also discuss several key challenges, including data scarcity, computational complexity, and cross-omics integration, and explore future directions such as multimodal learning, hybrid AI models, and clinical applications. By offering a comprehensive perspective, this paper underscores the transformative potential of LLMs in driving innovations in bioinformatics and precision medicine.
Related papers
- Biological Sequence with Language Model Prompting: A Survey [14.270959261105968]
Large Language models (LLMs) have emerged as powerful tools for addressing challenges across diverse domains.<n>This paper systematically investigates the application of prompt-based methods with LLMs to biological sequences.
arXiv Detail & Related papers (2025-03-06T06:28:36Z) - Large Language Models for Bioinformatics [58.892165394487414]
This survey focuses on the evolution, classification, and distinguishing features of bioinformatics-specific language models (BioLMs)<n>We explore the wide-ranging applications of BioLMs in critical areas such as disease diagnosis, drug discovery, and vaccine development.<n>We identify key challenges and limitations inherent in BioLMs, including data privacy and security concerns, interpretability issues, biases in training data and model outputs, and domain adaptation complexities.
arXiv Detail & Related papers (2025-01-10T01:43:05Z) - Biology Instructions: A Dataset and Benchmark for Multi-Omics Sequence Understanding Capability of Large Language Models [51.316001071698224]
We introduce Biology-Instructions, the first large-scale multi-omics biological sequences-related instruction-tuning dataset.<n>This dataset can bridge the gap between large language models (LLMs) and complex biological sequences-related tasks.<n>We also develop a strong baseline called ChatMultiOmics with a novel three-stage training pipeline.
arXiv Detail & Related papers (2024-12-26T12:12:23Z) - COMET: Benchmark for Comprehensive Biological Multi-omics Evaluation Tasks and Language Models [56.81513758682858]
COMET aims to evaluate models across single-omics, cross-omics, and multi-omics tasks.<n>First, we curate and develop a diverse collection of downstream tasks and datasets covering key structural and functional aspects in DNA, RNA, and proteins.<n>Then, we evaluate existing foundational language models for DNA, RNA, and proteins, as well as the newly proposed multi-omics method.
arXiv Detail & Related papers (2024-12-13T18:42:00Z) - Single-Cell Omics Arena: A Benchmark Study for Large Language Models on Cell Type Annotation Using Single-Cell Data [13.56585855722118]
Large language models (LLMs) have demonstrated their ability to efficiently process and synthesize vast corpora of text to automatically extract biological knowledge.<n>Our study explores the potential of LLMs to accurately classify and annotate cell types in single-cell RNA sequencing (scRNA-seq) data.<n>The results demonstrate that LLMs can provide robust interpretations of single-cell data without requiring additional fine-tuning.
arXiv Detail & Related papers (2024-12-03T23:58:35Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
We study the performance of large language models (LLMs) on a wide spectrum of crucial bioinformatics tasks.
These tasks include the identification of potential coding regions, extraction of named entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular optimization, and resolution of educational bioinformatics problems.
Our findings indicate that, given appropriate prompts, LLMs like GPT variants can successfully handle most of these tasks.
arXiv Detail & Related papers (2024-02-21T11:27:31Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.