Privacy in Responsible AI: Approaches to Facial Recognition from Cloud Providers
- URL: http://arxiv.org/abs/2503.04866v1
- Date: Thu, 06 Mar 2025 12:04:12 GMT
- Title: Privacy in Responsible AI: Approaches to Facial Recognition from Cloud Providers
- Authors: Anna Elivanova,
- Abstract summary: Cloud providers, such as Microsoft, AWS, and Google, are at the forefront of delivering facial-related technology services.<n>This paper compares how these cloud giants implement the privacy principle into their facial recognition and detection services.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the use of facial recognition technology is expanding in different domains, ensuring its responsible use is gaining more importance. This paper conducts a comprehensive literature review of existing studies on facial recognition technology from the perspective of privacy, which is one of the key Responsible AI principles. Cloud providers, such as Microsoft, AWS, and Google, are at the forefront of delivering facial-related technology services, but their approaches to responsible use of these technologies vary significantly. This paper compares how these cloud giants implement the privacy principle into their facial recognition and detection services. By analysing their approaches, it identifies both common practices and notable differences. The results of this research will be valuable for developers and businesses by providing them insights into best practices of three major companies for integration responsible AI, particularly privacy, into their cloud-based facial recognition technologies.
Related papers
- A Survey on Facial Image Privacy Preservation in Cloud-Based Services [22.38855934169858]
Facial recognition models are increasingly employed by commercial enterprises, government agencies, and cloud service providers for identity verification, consumer services, and surveillance.<n>Users' facial images may be exploited without their consent, leading to potential data breaches and misuse.<n>This survey presents a comprehensive review of current methods aimed at preserving facial image privacy in cloud-based services.
arXiv Detail & Related papers (2025-01-15T09:00:32Z) - Privacy Risks of General-Purpose AI Systems: A Foundation for Investigating Practitioner Perspectives [47.17703009473386]
Powerful AI models have led to impressive leaps in performance across a wide range of tasks.
Privacy concerns have led to a wealth of literature covering various privacy risks and vulnerabilities of AI models.
We conduct a systematic review of these survey papers to provide a concise and usable overview of privacy risks in GPAIS.
arXiv Detail & Related papers (2024-07-02T07:49:48Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
We propose a hardware-level face de-identification method to solve this vulnerability.
We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input.
arXiv Detail & Related papers (2024-03-31T19:28:04Z) - Privacy and Copyright Protection in Generative AI: A Lifecycle Perspective [28.968233485060654]
We discuss the multifaceted challenges of privacy and copyright protection within the data lifecycle.
We advocate for integrated approaches that combines technical innovation with ethical foresight.
This work aims to catalyze a broader discussion and inspire concerted efforts towards data privacy and copyright integrity in Generative AI.
arXiv Detail & Related papers (2023-11-30T05:03:08Z) - PrivacyProber: Assessment and Detection of Soft-Biometric
Privacy-Enhancing Techniques [1.790445868185437]
We study the robustness of several state-of-the-art soft-biometric privacy-enhancing techniques to attribute recovery attempts.
We propose PrivacyProber, a high-level framework for restoring soft-biometric information from privacy-enhanced facial images.
arXiv Detail & Related papers (2022-11-16T12:20:18Z) - Privacy-Preserving Face Recognition with Learnable Privacy Budgets in
Frequency Domain [77.8858706250075]
This paper proposes a privacy-preserving face recognition method using differential privacy in the frequency domain.
Our method performs very well with several classical face recognition test sets.
arXiv Detail & Related papers (2022-07-15T07:15:36Z) - An Overview of Privacy-enhancing Technologies in Biometric Recognition [12.554656658516262]
This work provides an overview of concepts of privacy-enhancing technologies for biometrics in a unified framework.
Fundamental properties and limitations of existing approaches are discussed and related to data protection techniques and principles.
This paper is meant as a point of entry to the field of biometric data protection and is directed towards experienced researchers as well as non-experts.
arXiv Detail & Related papers (2022-06-21T15:21:29Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
We investigate the face privacy protection from a technology standpoint based on a new type of customized cloak.
We propose a new method, named one person one mask (OPOM), to generate person-specific (class-wise) universal masks.
The effectiveness of the proposed method is evaluated on both common and celebrity datasets.
arXiv Detail & Related papers (2022-05-24T11:29:37Z) - More Than Privacy: Applying Differential Privacy in Key Areas of
Artificial Intelligence [62.3133247463974]
We show that differential privacy can do more than just privacy preservation in AI.
It can also be used to improve security, stabilize learning, build fair models, and impose composition in selected areas of AI.
arXiv Detail & Related papers (2020-08-05T03:07:36Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.