Label Distribution Learning-Enhanced Dual-KNN for Text Classification
- URL: http://arxiv.org/abs/2503.04869v1
- Date: Thu, 06 Mar 2025 15:15:26 GMT
- Title: Label Distribution Learning-Enhanced Dual-KNN for Text Classification
- Authors: Bo Yuan, Yulin Chen, Zhen Tan, Wang Jinyan, Huan Liu, Yin Zhang,
- Abstract summary: Internal information generated by the model itself during training, like text embeddings and predicted label probability distributions, are exploited poorly when predicting the outcomes of some texts.<n>We propose a dual $k$ nearest neighbor (D$k$NN) framework with two $k$NN modules, to retrieve several neighbors from the training set and augment the distribution of labels.<n>We also introduce a label distribution learning module that can learn label similarity, and generate a better label distribution to help models distinguish texts more effectively.
- Score: 24.992774049517994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many text classification methods usually introduce external information (e.g., label descriptions and knowledge bases) to improve the classification performance. Compared to external information, some internal information generated by the model itself during training, like text embeddings and predicted label probability distributions, are exploited poorly when predicting the outcomes of some texts. In this paper, we focus on leveraging this internal information, proposing a dual $k$ nearest neighbor (D$k$NN) framework with two $k$NN modules, to retrieve several neighbors from the training set and augment the distribution of labels. For the $k$NN module, it is easily confused and may cause incorrect predictions when retrieving some nearest neighbors from noisy datasets (datasets with labeling errors) or similar datasets (datasets with similar labels). To address this issue, we also introduce a label distribution learning module that can learn label similarity, and generate a better label distribution to help models distinguish texts more effectively. This module eases model overfitting and improves final classification performance, hence enhancing the quality of the retrieved neighbors by $k$NN modules during inference. Extensive experiments on the benchmark datasets verify the effectiveness of our method.
Related papers
- Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
Learning from noisy labels is an important and long-standing problem in machine learning for real applications.
In this paper, we reformulate the label-noise problem from a generative-model perspective.
Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets.
arXiv Detail & Related papers (2023-05-31T03:01:36Z) - M-Tuning: Prompt Tuning with Mitigated Label Bias in Open-Set Scenarios [58.617025733655005]
We propose a vision-language prompt tuning method with mitigated label bias (M-Tuning)<n>It introduces open words from the WordNet to extend the range of words forming the prompt texts from only closed-set label words to more, and thus prompts are tuned in a simulated open-set scenario.<n>Our method achieves the best performance on datasets with various scales, and extensive ablation studies also validate its effectiveness.
arXiv Detail & Related papers (2023-03-09T09:05:47Z) - Trustable Co-label Learning from Multiple Noisy Annotators [68.59187658490804]
Supervised deep learning depends on massive accurately annotated examples.
A typical alternative is learning from multiple noisy annotators.
This paper proposes a data-efficient approach, called emphTrustable Co-label Learning (TCL)
arXiv Detail & Related papers (2022-03-08T16:57:00Z) - DocSCAN: Unsupervised Text Classification via Learning from Neighbors [2.2082422928825145]
We introduce DocSCAN, a completely unsupervised text classification approach using Semantic Clustering by Adopting Nearest-Neighbors (SCAN)
For each document, we obtain semantically informative vectors from a large pre-trained language model. Similar documents have proximate vectors, so neighbors in the representation space tend to share topic labels.
Our learnable clustering approach uses pairs of neighboring datapoints as a weak learning signal. The proposed approach learns to assign classes to the whole dataset without provided ground-truth labels.
arXiv Detail & Related papers (2021-05-09T21:20:31Z) - Label Confusion Learning to Enhance Text Classification Models [3.0251266104313643]
Label Confusion Model (LCM) learns label confusion to capture semantic overlap among labels.
LCM can generate a better label distribution to replace the original one-hot label vector.
experiments on five text classification benchmark datasets reveal the effectiveness of LCM for several widely used deep learning classification models.
arXiv Detail & Related papers (2020-12-09T11:34:35Z) - Unsupervised Label Refinement Improves Dataless Text Classification [48.031421660674745]
Dataless text classification is capable of classifying documents into previously unseen labels by assigning a score to any document paired with a label description.
While promising, it crucially relies on accurate descriptions of the label set for each downstream task.
This reliance causes dataless classifiers to be highly sensitive to the choice of label descriptions and hinders the broader application of dataless classification in practice.
arXiv Detail & Related papers (2020-12-08T03:37:50Z) - Delving Deep into Label Smoothing [112.24527926373084]
Label smoothing is an effective regularization tool for deep neural networks (DNNs)
We present an Online Label Smoothing (OLS) strategy, which generates soft labels based on the statistics of the model prediction for the target category.
arXiv Detail & Related papers (2020-11-25T08:03:11Z) - Meta-Learning for Neural Relation Classification with Distant
Supervision [38.755055486296435]
We propose a meta-learning based approach, which learns to reweight noisy training data under the guidance of reference data.
Experiments on several datasets demonstrate that the reference data can effectively guide the selection of training data.
arXiv Detail & Related papers (2020-10-26T12:52:28Z) - Classify and Generate Reciprocally: Simultaneous Positive-Unlabelled
Learning and Conditional Generation with Extra Data [77.31213472792088]
The scarcity of class-labeled data is a ubiquitous bottleneck in many machine learning problems.
We address this problem by leveraging Positive-Unlabeled(PU) classification and the conditional generation with extra unlabeled data.
We present a novel training framework to jointly target both PU classification and conditional generation when exposed to extra data.
arXiv Detail & Related papers (2020-06-14T08:27:40Z) - Learning with Out-of-Distribution Data for Audio Classification [60.48251022280506]
We show that detecting and relabelling certain OOD instances, rather than discarding them, can have a positive effect on learning.
The proposed method is shown to improve the performance of convolutional neural networks by a significant margin.
arXiv Detail & Related papers (2020-02-11T21:08:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.