TinyR1-32B-Preview: Boosting Accuracy with Branch-Merge Distillation
- URL: http://arxiv.org/abs/2503.04872v2
- Date: Mon, 17 Mar 2025 10:36:30 GMT
- Title: TinyR1-32B-Preview: Boosting Accuracy with Branch-Merge Distillation
- Authors: Lin Sun, Guangxiang Zhao, Xiaoqi Jian, Yuhan Wu, Weihong Lin, Yongfu Zhu, Change Jia, Linglin Zhang, Jinzhu Wu, Junfeng Ran, Sai-er Hu, Zihan Jiang, Junting Zhou, Wenrui Liu, Bin Cui, Tong Yang, Xiangzheng Zhang,
- Abstract summary: We introduce the Branch-Merge distillation approach, which enhances model compression through two phases.<n>We validate our distillation approach using DeepSeek-R1 as the teacher and DeepSeek-R1-Distill-Qwen-32B as the student.<n>The resulting merged model, TinyR1-32B-Preview, outperforms its counterpart DeepSeek-R1-Distill-Qwen-32B across multiple benchmarks.
- Score: 19.938309176933902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The challenge of reducing the size of Large Language Models (LLMs) while maintaining their performance has gained significant attention. However, existing methods, such as model distillation and transfer learning, often fail to achieve high accuracy. To address this limitation, we introduce the Branch-Merge distillation approach, which enhances model compression through two phases: (1) the Branch Phase, where knowledge from a large teacher model is \textit{selectively distilled} into specialized student models via domain-specific supervised fine-tuning (SFT); And (2) the Merge Phase, where these student models are merged to enable cross-domain knowledge transfer and improve generalization. We validate our distillation approach using DeepSeek-R1 as the teacher and DeepSeek-R1-Distill-Qwen-32B as the student. The resulting merged model, TinyR1-32B-Preview, outperforms its counterpart DeepSeek-R1-Distill-Qwen-32B across multiple benchmarks, including Mathematics (+5.5 points), Coding (+4.4 points) and Science (+2.9 points), while achieving near-equal performance to DeepSeek-R1 on AIME 2024. The Branch-Merge distillation approach provides a scalable solution for creating smaller, high-performing LLMs with reduced computational cost and time.
Related papers
- Multi-Level Decoupled Relational Distillation for Heterogeneous Architectures [6.231548250160585]
Multi-Level Decoupled Knowledge Distillation (MLDR-KD) improves student model performance with gains of up to 4.86% on CodeAR-100 and 2.78% on Tiny-ImageNet datasets respectively.
arXiv Detail & Related papers (2025-02-10T06:41:20Z) - Gap Preserving Distillation by Building Bidirectional Mappings with A Dynamic Teacher [43.678380057638016]
Gap Preserving Distillation (GPD) method trains an additional dynamic teacher model from scratch along with training the student to bridge this gap.
In experiments, GPD significantly outperforms existing distillation methods on top of both CNNs and transformers architectures.
GPD also generalizes well to the scenarios without a pre-trained teacher, including training from scratch and fine-tuning, yielding a large improvement of 1.80% and 0.89% on ResNet18.
arXiv Detail & Related papers (2024-10-05T12:29:51Z) - EmbedDistill: A Geometric Knowledge Distillation for Information
Retrieval [83.79667141681418]
Large neural models (such as Transformers) achieve state-of-the-art performance for information retrieval (IR)
We propose a novel distillation approach that leverages the relative geometry among queries and documents learned by the large teacher model.
We show that our approach successfully distills from both dual-encoder (DE) and cross-encoder (CE) teacher models to 1/10th size asymmetric students that can retain 95-97% of the teacher performance.
arXiv Detail & Related papers (2023-01-27T22:04:37Z) - TinyMIM: An Empirical Study of Distilling MIM Pre-trained Models [31.16595289223858]
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs)
However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach.
We explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones.
arXiv Detail & Related papers (2023-01-03T18:59:54Z) - Point-to-Voxel Knowledge Distillation for LiDAR Semantic Segmentation [74.67594286008317]
This article addresses the problem of distilling knowledge from a large teacher model to a slim student network for LiDAR semantic segmentation.
We propose the Point-to-Voxel Knowledge Distillation (PVD), which transfers the hidden knowledge from both point level and voxel level.
arXiv Detail & Related papers (2022-06-05T05:28:32Z) - ERNIE-Search: Bridging Cross-Encoder with Dual-Encoder via Self
On-the-fly Distillation for Dense Passage Retrieval [54.54667085792404]
We propose a novel distillation method that significantly advances cross-architecture distillation for dual-encoders.
Our method 1) introduces a self on-the-fly distillation method that can effectively distill late interaction (i.e., ColBERT) to vanilla dual-encoder, and 2) incorporates a cascade distillation process to further improve the performance with a cross-encoder teacher.
arXiv Detail & Related papers (2022-05-18T18:05:13Z) - New Perspective on Progressive GANs Distillation for One-class Novelty
Detection [21.90786581579228]
Generative Adversarial Network based on thecoder-Decoder-Encoder scheme (EDE-GAN) achieves state-of-the-art performance.
New technology, Progressive Knowledge Distillation with GANs (P-KDGAN) connects two standard GANs through the designed distillation loss.
Two-step progressive learning continuously augments the performance of student GANs with improved results over single-step approach.
arXiv Detail & Related papers (2021-09-15T13:45:30Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z) - MetaDistiller: Network Self-Boosting via Meta-Learned Top-Down
Distillation [153.56211546576978]
In this work, we propose that better soft targets with higher compatibil-ity can be generated by using a label generator.
We can employ the meta-learning technique to optimize this label generator.
The experiments are conducted on two standard classificationbenchmarks, namely CIFAR-100 and ILSVRC2012.
arXiv Detail & Related papers (2020-08-27T13:04:27Z) - Distilling Object Detectors with Task Adaptive Regularization [97.52935611385179]
Current state-of-the-art object detectors are at the expense of high computational costs and are hard to deploy to low-end devices.
Knowledge distillation, which aims at training a smaller student network by transferring knowledge from a larger teacher model, is one of the promising solutions for model miniaturization.
arXiv Detail & Related papers (2020-06-23T15:58:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.