Classical Simulation of Non-Classical Systems: A Large Deviation Analysis
- URL: http://arxiv.org/abs/2503.04920v1
- Date: Thu, 06 Mar 2025 19:36:43 GMT
- Title: Classical Simulation of Non-Classical Systems: A Large Deviation Analysis
- Authors: Adam Brandenburger, Pierfrancesco La Mura,
- Abstract summary: We show that the probability of a large fluctuation under the classical simulation can be strictly greater than under the actual non-classical system.<n>We propose this potential large deviation stability of quantum (and no-signaling) systems as a novel form of quantum advantage.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Any quasi-probability representation of a no-signaling system -- including quantum systems -- can be simulated via a purely classical scheme by allowing signed events and a cancellation procedure. This raises a fundamental question: What properties of the non-classical system does such a classical simulation fail to replicate? We answer by using large deviation theory to show that the probability of a large fluctuation under the classical simulation can be strictly greater than under the actual non-classical system. The key finding driving our result is that negativity in probability relaxes the data processing inequality of information theory. We propose this potential large deviation stability of quantum (and no-signaling) systems as a novel form of quantum advantage.
Related papers
- Improved amplitude amplification strategies for the quantum simulation of classical transport problems [41.94295877935867]
We show that oblivious amplitude amplification when applied to non-unitary dynamics leads to a distortion of the quantum state and to an accompanying error in the quantum update.<n>We also propose an amplification strategy that helps mitigate the distortion error, while still securing an enhanced success probability.
arXiv Detail & Related papers (2025-02-25T15:17:03Z) - Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.<n>We show that no such simulation exists, thereby certifying quantum coherence.<n>Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - Theory-independent monitoring of the decoherence of a superconducting qubit with generalized contextuality [0.0]
Characterizing the nonclassicality of quantum systems under minimal assumptions is an important challenge for quantum foundations and technology.
We introduce a theory-independent method of process tomography and perform it on a superconducting qubit.
We demonstrate its decoherence without assuming quantum theory or trusting the devices by modelling the system as a general probabilistic theory.
arXiv Detail & Related papers (2024-11-20T16:06:52Z) - Stochastic simulation of dissipative quantum oscillators [0.0]
We use the paradigmatic case of a dissipative oscillator to give a pedagogic introduction into the modelling of open quantum systems.
We use quasiclassical methods that use a 'quantum' noise spectrum to capture the influence of the environment on the system.
Such methods have the potential to offer insights into the impact of the quantum nature of the environment on the dynamics of the system of interest whilst still being computationally tractable.
arXiv Detail & Related papers (2024-06-07T15:49:50Z) - Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing [0.0]
We ask: Can the structure that allows one to avoid barren plateaus also be leveraged to efficiently simulate the loss classically?
We present strong evidence that commonly used models with provable absence of barren plateaus are also classically simulable.
Our analysis sheds serious doubt on the non-classicality of the information processing capabilities of parametrized quantum circuits for barren plateau-free landscapes.
arXiv Detail & Related papers (2023-12-14T16:54:57Z) - Classical analogs of generalized purities, entropies, and logarithmic
negativity [0.0]
It has recently been proposed classical analogs of the purity, linear quantum entropy, and von Neumann entropy for classical integrable systems.
We provide classical analogs of the generalized purities, Bastiaans-Tsallis entropies, R'enyi pur entropies, and logarithmic negativity for classical integrable systems.
arXiv Detail & Related papers (2023-05-04T14:50:32Z) - Classical Chaos in Quantum Computers [39.58317527488534]
Current-day quantum processors, comprising 50-100 qubits, operate outside the range of quantum simulation on classical computers.
We demonstrate that the simulation of classical limits can be a potent diagnostic tool potentially mitigating this problem.
We find that classical and quantum simulations lead to similar stability metrics in systems with $mathcalO$ transmons.
arXiv Detail & Related papers (2023-04-27T18:00:04Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.