Semi-Quantum Conference Key Agreement with GHZ-type states
- URL: http://arxiv.org/abs/2503.05045v1
- Date: Thu, 06 Mar 2025 23:45:21 GMT
- Title: Semi-Quantum Conference Key Agreement with GHZ-type states
- Authors: Rúben Barreiro, Walter O. Krawec, Paulo Mateus, Nikola Paunković, André Souto,
- Abstract summary: We present information-theoretic security proof, addressing collective attacks within the limit of infinitely many rounds.<n>This advancement enhances the feasibility of SQCKA protocols for real-world applications.
- Score: 3.553500674362332
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We propose a semi-quantum conference key agreement (SQCKA) protocol that leverages on GHZ states. We provide a comprehensive security analysis for our protocol that does not rely on a trusted mediator party. We present information-theoretic security proof, addressing collective attacks within the asymptotic limit of infinitely many rounds. This assumption is practical, as participants can monitor and abort the protocol if deviations from expected noise patterns occur. This advancement enhances the feasibility of SQCKA protocols for real-world applications, ensuring strong security without complex network topologies or third-party trust.
Related papers
- Quantum Conference Key Agreement with Classical Advantage Distillation [3.4084528001799064]
We prove security of a quantum conference key agreement (QCKA) protocol augmented with a classical advantage distillation (CAD) protocol.
We derive a proof of security, in the finite key setting, that is able to bound the secure key rate for any general, coherent, attack.
arXiv Detail & Related papers (2025-03-31T17:07:36Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Experimental quantum secret sharing based on phase encoding of coherent
states [17.01107355316032]
We propose a quantum secret sharing protocol with simple phase encoding of coherent states among three parties.
Our scheme achieves a key rate of 85.3 bps under a 35 dB channel loss.
arXiv Detail & Related papers (2023-03-26T04:35:07Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Byzantine-Robust Federated Learning with Optimal Statistical Rates and
Privacy Guarantees [123.0401978870009]
We propose Byzantine-robust federated learning protocols with nearly optimal statistical rates.
We benchmark against competing protocols and show the empirical superiority of the proposed protocols.
Our protocols with bucketing can be naturally combined with privacy-guaranteeing procedures to introduce security against a semi-honest server.
arXiv Detail & Related papers (2022-05-24T04:03:07Z) - Scalable Mediated Semi-quantum Key Distribution [5.548873288570182]
Mediated semi-quantum key distribution (M-SQKD) permits two limited "semi-quantum" or "classical" users to establish a secret key with the help of a third party (TP)
Several protocols have been studied recently for two-party scenarios, but no one has considered M-SQKD for multi-party scenarios.
arXiv Detail & Related papers (2022-05-13T09:21:12Z) - High-Dimensional Quantum Conference Key Agreement [1.827510863075184]
Quantum Conference Key Agreement (QCKA) protocols are designed to allow multiple parties to agree on a shared secret key.
In this paper, we consider a high-dimensional QCKA protocol and prove its information theoretic security against arbitrary, general, attacks in the finite-key scenario.
arXiv Detail & Related papers (2022-01-31T23:06:31Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Phase-Matching Quantum Cryptographic Conferencing [10.15251318968606]
We report a QCC protocol based on weak coherent state interferences named phase-matching quantum cryptographic conferencing.
The proposed protocol can improve the key generation rate from $mathrmO(etaN)$ to $mathrmO(etaN-1)$ compared with the measurement device independent QCC protocols.
arXiv Detail & Related papers (2020-06-24T03:26:00Z) - Composable Security for Multipartite Entanglement Verification [3.4806267677524896]
We present a composably secure protocol allowing $n$ parties to test an entanglement generation resource controlled by a possibly dishonest party.
The test consists only in local quantum operations and authenticated classical communication once a state is shared among them.
Our protocol can typically be used as a subroutine in a Quantum Internet, to securely share a GHZ state among the network before performing a communication or computation protocol.
arXiv Detail & Related papers (2020-04-16T14:33:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.