AutoTestForge: A Multidimensional Automated Testing Framework for Natural Language Processing Models
- URL: http://arxiv.org/abs/2503.05102v1
- Date: Fri, 07 Mar 2025 02:44:17 GMT
- Title: AutoTestForge: A Multidimensional Automated Testing Framework for Natural Language Processing Models
- Authors: Hengrui Xing, Cong Tian, Liang Zhao, Zhi Ma, WenSheng Wang, Nan Zhang, Chao Huang, Zhenhua Duan,
- Abstract summary: We introduce AutoTestForge, an automated and multidimensional testing framework for NLP models.<n>Within AutoTestForge, through the utilization of Large Language Models (LLMs) to automatically generate test templates and instantiate them, manual involvement is significantly reduced.<n>The framework also extends the test suite across three dimensions, taxonomy, fairness, and robustness, offering a comprehensive evaluation of the capabilities of NLP models.
- Score: 11.958545255487735
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the application of behavioral testing in Natural Language Processing (NLP) model evaluation has experienced a remarkable and substantial growth. However, the existing methods continue to be restricted by the requirements for manual labor and the limited scope of capability assessment. To address these limitations, we introduce AutoTestForge, an automated and multidimensional testing framework for NLP models in this paper. Within AutoTestForge, through the utilization of Large Language Models (LLMs) to automatically generate test templates and instantiate them, manual involvement is significantly reduced. Additionally, a mechanism for the validation of test case labels based on differential testing is implemented which makes use of a multi-model voting system to guarantee the quality of test cases. The framework also extends the test suite across three dimensions, taxonomy, fairness, and robustness, offering a comprehensive evaluation of the capabilities of NLP models. This expansion enables a more in-depth and thorough assessment of the models, providing valuable insights into their strengths and weaknesses. A comprehensive evaluation across sentiment analysis (SA) and semantic textual similarity (STS) tasks demonstrates that AutoTestForge consistently outperforms existing datasets and testing tools, achieving higher error detection rates (an average of $30.89\%$ for SA and $34.58\%$ for STS). Moreover, different generation strategies exhibit stable effectiveness, with error detection rates ranging from $29.03\% - 36.82\%$.
Related papers
- AutoLogi: Automated Generation of Logic Puzzles for Evaluating Reasoning Abilities of Large Language Models [86.83875864328984]
We propose an automated method for synthesizing open-ended logic puzzles, and use it to develop a bilingual benchmark, AutoLogi.<n>Our approach features program-based verification and controllable difficulty levels, enabling more reliable evaluation that better distinguishes models' reasoning abilities.
arXiv Detail & Related papers (2025-02-24T07:02:31Z) - VALTEST: Automated Validation of Language Model Generated Test Cases [0.7059472280274008]
Large Language Models (LLMs) have demonstrated significant potential in automating software testing, specifically in generating unit test cases.
This paper introduces VALTEST, a novel framework designed to automatically validate test cases generated by LLMs by leveraging token probabilities.
arXiv Detail & Related papers (2024-11-13T00:07:32Z) - Context-Aware Testing: A New Paradigm for Model Testing with Large Language Models [49.06068319380296]
We introduce context-aware testing (CAT) which uses context as an inductive bias to guide the search for meaningful model failures.
We instantiate the first CAT system, SMART Testing, which employs large language models to hypothesize relevant and likely failures.
arXiv Detail & Related papers (2024-10-31T15:06:16Z) - ASTER: Natural and Multi-language Unit Test Generation with LLMs [6.259245181881262]
We describe a generic pipeline that incorporates static analysis to guide LLMs in generating compilable and high-coverage test cases.<n>We conduct an empirical study to assess the quality of the generated tests in terms of code coverage and test naturalness.
arXiv Detail & Related papers (2024-09-04T21:46:18Z) - SYNTHEVAL: Hybrid Behavioral Testing of NLP Models with Synthetic CheckLists [59.08999823652293]
We propose SYNTHEVAL to generate a wide range of test types for a comprehensive evaluation of NLP models.
In the last stage, human experts investigate the challenging examples, manually design templates, and identify the types of failures the taskspecific models consistently exhibit.
We apply SYNTHEVAL to two classification tasks, sentiment analysis and toxic language detection, and show that our framework is effective in identifying weaknesses of strong models on these tasks.
arXiv Detail & Related papers (2024-08-30T17:41:30Z) - A System for Automated Unit Test Generation Using Large Language Models and Assessment of Generated Test Suites [1.4563527353943984]
Large Language Models (LLMs) have been applied to various aspects of software development.
We present AgoneTest: an automated system for generating test suites for Java projects.
arXiv Detail & Related papers (2024-08-14T23:02:16Z) - Automatic Generation of Behavioral Test Cases For Natural Language Processing Using Clustering and Prompting [6.938766764201549]
This paper introduces an automated approach to develop test cases by exploiting the power of large language models and statistical techniques.
We analyze the behavioral test profiles across four different classification algorithms and discuss the limitations and strengths of those models.
arXiv Detail & Related papers (2024-07-31T21:12:21Z) - Can You Rely on Your Model Evaluation? Improving Model Evaluation with
Synthetic Test Data [75.20035991513564]
We introduce 3S Testing, a deep generative modeling framework to facilitate model evaluation.
Our experiments demonstrate that 3S Testing outperforms traditional baselines.
These results raise the question of whether we need a paradigm shift away from limited real test data towards synthetic test data.
arXiv Detail & Related papers (2023-10-25T10:18:44Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
We discuss a paradigm shift from static evaluation methods to adaptive testing.
This involves estimating the characteristics and value of each test item in the benchmark and dynamically adjusting items in real-time.
We analyze the current approaches, advantages, and underlying reasons for adopting psychometrics in AI evaluation.
arXiv Detail & Related papers (2023-06-18T09:54:33Z) - Active Testing: Sample-Efficient Model Evaluation [39.200332879659456]
We introduce active testing: a new framework for sample-efficient model evaluation.
Active testing addresses this by carefully selecting the test points to label.
We show how to remove that bias while reducing the variance of the estimator.
arXiv Detail & Related papers (2021-03-09T10:20:49Z) - Beyond Accuracy: Behavioral Testing of NLP models with CheckList [66.42971817954806]
CheckList is a task-agnostic methodology for testing NLP models.
CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation.
In a user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.
arXiv Detail & Related papers (2020-05-08T15:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.