Gaussian Random Fields as an Abstract Representation of Patient Metadata for Multimodal Medical Image Segmentation
- URL: http://arxiv.org/abs/2503.05214v2
- Date: Wed, 19 Mar 2025 09:54:47 GMT
- Title: Gaussian Random Fields as an Abstract Representation of Patient Metadata for Multimodal Medical Image Segmentation
- Authors: Bill Cassidy, Christian McBride, Connah Kendrick, Neil D. Reeves, Joseph M. Pappachan, Shaghayegh Raad, Moi Hoon Yap,
- Abstract summary: Chronic wounds can have devastating consequences for the patient.<n>Deep learning methods for the detection and monitoring of such wounds have the potential to reduce the impact to both patient and clinician.<n>We present a novel multimodal segmentation method which allows for the introduction of patient metadata into the training workflow.
- Score: 6.531186135660947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing rate of chronic wound occurrence, especially in patients with diabetes, has become a concerning trend in recent years. Chronic wounds are difficult and costly to treat, and have become a serious burden on health care systems worldwide. Chronic wounds can have devastating consequences for the patient, with infection often leading to reduced quality of life and increased mortality risk. Innovative deep learning methods for the detection and monitoring of such wounds have the potential to reduce the impact to both patient and clinician. We present a novel multimodal segmentation method which allows for the introduction of patient metadata into the training workflow whereby the patient data are expressed as Gaussian random fields. Our results indicate that the proposed method improved performance when utilising multiple models, each trained on different metadata categories. Using the Diabetic Foot Ulcer Challenge 2022 test set, when compared to the baseline results (intersection over union = 0.4670, Dice similarity coefficient = 0.5908) we demonstrate improvements of +0.0220 and +0.0229 for intersection over union and Dice similarity coefficient respectively. This paper presents the first study to focus on integrating patient data into a chronic wound segmentation workflow. Our results show significant performance gains when training individual models using specific metadata categories, followed by average merging of prediction masks using distance transforms. All source code for this study is available at: https://github.com/mmu-dermatology-research/multimodal-grf
Related papers
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.<n>Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.<n>Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Fusion of Diffusion Weighted MRI and Clinical Data for Predicting
Functional Outcome after Acute Ischemic Stroke with Deep Contrastive Learning [1.4149937986822438]
Stroke is a common disabling neurological condition that affects about one-quarter of the adult population over age 25.
Our proposed fusion model achieves 0.87, 0.80 and 80.45% for AUC, F1-score and accuracy, respectively.
arXiv Detail & Related papers (2024-02-16T18:51:42Z) - TMSS: An End-to-End Transformer-based Multimodal Network for
Segmentation and Survival Prediction [0.0]
oncologists do not do this in their analysis but rather fuse the information in their brain from multiple sources such as medical images and patient history.
This work proposes a deep learning method that mimics oncologists' analytical behavior when quantifying cancer and estimating patient survival.
arXiv Detail & Related papers (2022-09-12T06:22:05Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Multi-task fusion for improving mammography screening data
classification [3.7683182861690843]
We propose a pipeline approach, where we first train a set of individual, task-specific models.
We then investigate the fusion thereof, which is in contrast to the standard model ensembling strategy.
Our fusion approaches improve AUC scores significantly by up to 0.04 compared to standard model ensembling.
arXiv Detail & Related papers (2021-12-01T13:56:27Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Mixture Model Framework for Traumatic Brain Injury Prognosis Using
Heterogeneous Clinical and Outcome Data [3.7363119896212478]
We develop a method for modeling large heterogeneous data types relevant to TBI.
The model is trained on a dataset encompassing a variety of data types, including demographics, blood-based biomarkers, and imaging findings.
It is used to stratify patients into distinct groups in an unsupervised learning setting.
arXiv Detail & Related papers (2020-12-22T19:31:03Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
We develop a deep learning approach for clustering time-series data, where each cluster comprises patients who share similar future outcomes of interest.
Experiments on two real-world datasets show that our model achieves superior clustering performance over state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-06-15T20:48:43Z) - Prediction of Thrombectomy Functional Outcomes using Multimodal Data [2.358784542343728]
We propose a novel deep learning approach to directly exploit multimodal data to estimate the success of endovascular treatment.
We incorporate an attention mechanism in our architecture to model global feature inter-dependencies, both channel-wise and spatially.
arXiv Detail & Related papers (2020-05-26T21:51:58Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.