LoRACode: LoRA Adapters for Code Embeddings
- URL: http://arxiv.org/abs/2503.05315v1
- Date: Fri, 07 Mar 2025 10:50:45 GMT
- Title: LoRACode: LoRA Adapters for Code Embeddings
- Authors: Saumya Chaturvedi, Aman Chadha, Laurent Bindschaedler,
- Abstract summary: We introduce a parameter-efficient fine-tuning method based on Low-Rank Adaptation (LoRA) to construct task-specific adapters for code retrieval.<n>Our approach reduces the number of trainable parameters to less than two percent of the base model, enabling rapid fine-tuning on extensive code corpora.
- Score: 1.5525560291268214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Code embeddings are essential for semantic code search; however, current approaches often struggle to capture the precise syntactic and contextual nuances inherent in code. Open-source models such as CodeBERT and UniXcoder exhibit limitations in scalability and efficiency, while high-performing proprietary systems impose substantial computational costs. We introduce a parameter-efficient fine-tuning method based on Low-Rank Adaptation (LoRA) to construct task-specific adapters for code retrieval. Our approach reduces the number of trainable parameters to less than two percent of the base model, enabling rapid fine-tuning on extensive code corpora (2 million samples in 25 minutes on two H100 GPUs). Experiments demonstrate an increase of up to 9.1% in Mean Reciprocal Rank (MRR) for Code2Code search, and up to 86.69% for Text2Code search tasks across multiple programming languages. Distinction in task-wise and language-wise adaptation helps explore the sensitivity of code retrieval for syntactical and linguistic variations.
Related papers
- CodeSwift: Accelerating LLM Inference for Efficient Code Generation [17.681848203476687]
We propose CodeSwift, a highly efficient inference acceleration approach specifically designed for code generation.<n>CodeSwift constructs a multi-source datastore, providing access to both general and project-specific knowledge.<n> Experimental results show that CodeSwift can reach up to 2.53x and 2.54x speedup compared to autoregressive decoding in repository-level and standalone code generation tasks.
arXiv Detail & Related papers (2025-02-24T13:30:30Z) - Resource-Efficient & Effective Code Summarization [3.512140256677132]
GreenAI techniques, such as QLoRA, offer a promising path for dealing with large models' sustainability.
Our study evaluates two state-of-the-art CLMs across two programming languages: Python and Java.
Results show that QLoRA enables efficient fine-tuning of CLMs for code summarization.
arXiv Detail & Related papers (2025-02-05T21:06:30Z) - CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
We introduce CodeXEmbed, a family of large-scale code embedding models ranging from 400M to 7B parameters.
Our novel training pipeline unifies multiple programming languages and transforms various code-related tasks into a common retrieval framework.
Our 7B model sets a new state-of-the-art (SOTA) in code retrieval, outperforming the previous leading model, Voyage-Code, by over 20% on CoIR benchmark.
arXiv Detail & Related papers (2024-11-19T16:54:45Z) - Uncovering LLM-Generated Code: A Zero-Shot Synthetic Code Detector via Code Rewriting [78.48355455324688]
We propose a novel zero-shot synthetic code detector based on the similarity between the original code and its LLM-rewritten variants.<n>Our results demonstrate a significant improvement over existing SOTA synthetic content detectors.
arXiv Detail & Related papers (2024-05-25T08:57:28Z) - Prompt-based Code Completion via Multi-Retrieval Augmented Generation [15.233727939816388]
ProCC is a code completion framework leveraging prompt engineering and the contextual multi-armed bandits algorithm.
ProCC outperforms state-of-the-art code completion technique by 8.6% on our collected open-source benchmark suite.
ProCC also allows augmenting fine-tuned techniques in a plug-and-play manner, yielding 5.6% improvement over our studied fine-tuned model.
arXiv Detail & Related papers (2024-05-13T07:56:15Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - Code Detection for Hardware Acceleration Using Large Language Models [0.0]
This work presents the first analysis of code detection using large language models (LLMs)
We propose both a preliminary, naive prompt and a novel prompting strategy for code detection.
Results reveal that conventional prompting achieves great precision but poor accuracy (68.8%, 22.3%, and 79.2% for GEMM, convolution, and FFT, respectively) due to a high number of false positives.
Our novel prompting strategy substantially reduces false positives, resulting in excellent overall accuracy (91.1%, 97.9%, and 99.7%, respectively)
arXiv Detail & Related papers (2023-07-19T17:21:58Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
Large language models (LLMs) pretrained on vast source code have achieved prominent progress in code intelligence.
CodeT5+ is a family of encoder-decoder LLMs for code in which component modules can be flexibly combined to suit a wide range of downstream code tasks.
We extensively evaluate CodeT5+ on over 20 code-related benchmarks in different settings, including zero-shot, finetuning, and instruction-tuning.
arXiv Detail & Related papers (2023-05-13T14:23:07Z) - Revisiting Code Search in a Two-Stage Paradigm [67.02322603435628]
TOSS is a two-stage fusion code search framework.
It first uses IR-based and bi-encoder models to efficiently recall a small number of top-k code candidates.
It then uses fine-grained cross-encoders for finer ranking.
arXiv Detail & Related papers (2022-08-24T02:34:27Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
We propose a new approach with multimodal contrastive learning and soft data augmentation for code search.
We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages.
arXiv Detail & Related papers (2022-04-07T08:49:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.