AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons
- URL: http://arxiv.org/abs/2503.05731v2
- Date: Fri, 18 Apr 2025 22:04:46 GMT
- Title: AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons
- Authors: Shaona Ghosh, Heather Frase, Adina Williams, Sarah Luger, Paul Röttger, Fazl Barez, Sean McGregor, Kenneth Fricklas, Mala Kumar, Quentin Feuillade--Montixi, Kurt Bollacker, Felix Friedrich, Ryan Tsang, Bertie Vidgen, Alicia Parrish, Chris Knotz, Eleonora Presani, Jonathan Bennion, Marisa Ferrara Boston, Mike Kuniavsky, Wiebke Hutiri, James Ezick, Malek Ben Salem, Rajat Sahay, Sujata Goswami, Usman Gohar, Ben Huang, Supheakmungkol Sarin, Elie Alhajjar, Canyu Chen, Roman Eng, Kashyap Ramanandula Manjusha, Virendra Mehta, Eileen Long, Murali Emani, Natan Vidra, Benjamin Rukundo, Abolfazl Shahbazi, Kongtao Chen, Rajat Ghosh, Vithursan Thangarasa, Pierre Peigné, Abhinav Singh, Max Bartolo, Satyapriya Krishna, Mubashara Akhtar, Rafael Gold, Cody Coleman, Luis Oala, Vassil Tashev, Joseph Marvin Imperial, Amy Russ, Sasidhar Kunapuli, Nicolas Miailhe, Julien Delaunay, Bhaktipriya Radharapu, Rajat Shinde, Tuesday, Debojyoti Dutta, Declan Grabb, Ananya Gangavarapu, Saurav Sahay, Agasthya Gangavarapu, Patrick Schramowski, Stephen Singam, Tom David, Xudong Han, Priyanka Mary Mammen, Tarunima Prabhakar, Venelin Kovatchev, Rebecca Weiss, Ahmed Ahmed, Kelvin N. Manyeki, Sandeep Madireddy, Foutse Khomh, Fedor Zhdanov, Joachim Baumann, Nina Vasan, Xianjun Yang, Carlos Mougn, Jibin Rajan Varghese, Hussain Chinoy, Seshakrishna Jitendar, Manil Maskey, Claire V. Hardgrove, Tianhao Li, Aakash Gupta, Emil Joswin, Yifan Mai, Shachi H Kumar, Cigdem Patlak, Kevin Lu, Vincent Alessi, Sree Bhargavi Balija, Chenhe Gu, Robert Sullivan, James Gealy, Matt Lavrisa, James Goel, Peter Mattson, Percy Liang, Joaquin Vanschoren,
- Abstract summary: This paper introduces AILuminate v1.0, the first comprehensive industry-standard benchmark for assessing AI-product risk and reliability.<n>The benchmark evaluates an AI system's resistance to prompts designed to elicit dangerous, illegal, or undesirable behavior in 12 hazard categories.
- Score: 62.374792825813394
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement and deployment of AI systems have created an urgent need for standard safety-evaluation frameworks. This paper introduces AILuminate v1.0, the first comprehensive industry-standard benchmark for assessing AI-product risk and reliability. Its development employed an open process that included participants from multiple fields. The benchmark evaluates an AI system's resistance to prompts designed to elicit dangerous, illegal, or undesirable behavior in 12 hazard categories, including violent crimes, nonviolent crimes, sex-related crimes, child sexual exploitation, indiscriminate weapons, suicide and self-harm, intellectual property, privacy, defamation, hate, sexual content, and specialized advice (election, financial, health, legal). Our method incorporates a complete assessment standard, extensive prompt datasets, a novel evaluation framework, a grading and reporting system, and the technical as well as organizational infrastructure for long-term support and evolution. In particular, the benchmark employs an understandable five-tier grading scale (Poor to Excellent) and incorporates an innovative entropy-based system-response evaluation. In addition to unveiling the benchmark, this report also identifies limitations of our method and of building safety benchmarks generally, including evaluator uncertainty and the constraints of single-turn interactions. This work represents a crucial step toward establishing global standards for AI risk and reliability evaluation while acknowledging the need for continued development in areas such as multiturn interactions, multimodal understanding, coverage of additional languages, and emerging hazard categories. Our findings provide valuable insights for model developers, system integrators, and policymakers working to promote safer AI deployment.
Related papers
- TRIED: Truly Innovative and Effective AI Detection Benchmark, developed by WITNESS [0.0]
WITNESS introduces the Truly Innovative and Effective AI Detection (TRIED) Benchmark.
The report outlines how detection tools must evolve to become truly innovative and relevant.
It offers practical guidance for developers, policy actors, and standards bodies to design accountable, transparent, and user-centered detection solutions.
arXiv Detail & Related papers (2025-04-30T10:18:19Z) - Adapting Probabilistic Risk Assessment for AI [0.0]
General-purpose artificial intelligence (AI) systems present an urgent risk management challenge.
Current methods often rely on selective testing and undocumented assumptions about risk priorities.
This paper introduces the probabilistic risk assessment (PRA) for AI framework.
arXiv Detail & Related papers (2025-04-25T17:59:14Z) - Advancing Embodied Agent Security: From Safety Benchmarks to Input Moderation [52.83870601473094]
Embodied agents exhibit immense potential across a multitude of domains.
Existing research predominantly concentrates on the security of general large language models.
This paper introduces a novel input moderation framework, meticulously designed to safeguard embodied agents.
arXiv Detail & Related papers (2025-04-22T08:34:35Z) - On the Trustworthiness of Generative Foundation Models: Guideline, Assessment, and Perspective [333.9220561243189]
Generative Foundation Models (GenFMs) have emerged as transformative tools.
Their widespread adoption raises critical concerns regarding trustworthiness across dimensions.
This paper presents a comprehensive framework to address these challenges through three key contributions.
arXiv Detail & Related papers (2025-02-20T06:20:36Z) - Can We Trust AI Benchmarks? An Interdisciplinary Review of Current Issues in AI Evaluation [2.2241228857601727]
This paper presents an interdisciplinary meta-review of about 100 studies that discuss shortcomings in quantitative benchmarking practices.<n>It brings together many fine-grained issues in the design and application of benchmarks with broader sociotechnical issues.<n>Our review also highlights a series of systemic flaws in current practices, such as misaligned incentives, construct validity issues, unknown unknowns, and problems with the gaming of benchmark results.
arXiv Detail & Related papers (2025-02-10T15:25:06Z) - Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG) is an advanced technique designed to address the challenges of Artificial Intelligence-Generated Content (AIGC)<n>RAG provides reliable and up-to-date external knowledge, reduces hallucinations, and ensures relevant context across a wide range of tasks.<n>Despite RAG's success and potential, recent studies have shown that the RAG paradigm also introduces new risks, including privacy concerns, adversarial attacks, and accountability issues.
arXiv Detail & Related papers (2025-02-08T06:50:47Z) - SAIF: A Comprehensive Framework for Evaluating the Risks of Generative AI in the Public Sector [4.710921988115686]
We propose a Systematic dAta generatIon Framework for evaluating the risks of generative AI (SAIF)<n>SAIF involves four key stages: breaking down risks, designing scenarios, applying jailbreak methods, and exploring prompt types.<n>We believe that this study can play a crucial role in fostering the safe and responsible integration of generative AI into the public sector.
arXiv Detail & Related papers (2025-01-15T14:12:38Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.<n>Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.<n>However, the deployment of these agents in physical environments presents significant safety challenges.<n>This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Sociotechnical Safety Evaluation of Generative AI Systems [13.546708226350963]
Generative AI systems produce a range of risks.
To ensure the safety of generative AI systems, these risks must be evaluated.
We propose a three-layered framework that takes a structured, sociotechnical approach to evaluating these risks.
arXiv Detail & Related papers (2023-10-18T14:13:58Z) - Quantitative AI Risk Assessments: Opportunities and Challenges [7.35411010153049]
Best way to reduce risks is to implement comprehensive AI lifecycle governance.<n>Risks can be quantified using metrics from the technical community.<n>This paper explores these issues, focusing on the opportunities, challenges, and potential impacts of such an approach.
arXiv Detail & Related papers (2022-09-13T21:47:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.