SYMBIOSIS: Systems Thinking and Machine Intelligence for Better Outcomes in Society
- URL: http://arxiv.org/abs/2503.05857v1
- Date: Fri, 07 Mar 2025 17:07:26 GMT
- Title: SYMBIOSIS: Systems Thinking and Machine Intelligence for Better Outcomes in Society
- Authors: Sameer Sethi, Donald Martin Jr., Emmanuel Klu,
- Abstract summary: SYMBIOSIS is an AI-powered framework and platform designed to make Systems Thinking accessible for addressing societal challenges.<n>To address this, we developed a generative co-pilot that translates complex systems representations into natural language.<n>SYMBIOSIS aims to serve as a foundational step to unlock future research into responsible and society-centered AI.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents SYMBIOSIS, an AI-powered framework and platform designed to make Systems Thinking accessible for addressing societal challenges and unlock paths for leveraging systems thinking frameworks to improve AI systems. The platform establishes a centralized, open-source repository of systems thinking/system dynamics models categorized by Sustainable Development Goals (SDGs) and societal topics using topic modeling and classification techniques. Systems Thinking resources, though critical for articulating causal theories in complex problem spaces, are often locked behind specialized tools and intricate notations, creating high barriers to entry. To address this, we developed a generative co-pilot that translates complex systems representations - such as causal loop and stock-flow diagrams - into natural language (and vice-versa), allowing users to explore and build models without extensive technical training. Rooted in community-based system dynamics (CBSD) and informed by community-driven insights on societal context, we aim to bridge the problem understanding chasm. This gap, driven by epistemic uncertainty, often limits ML developers who lack the community-specific knowledge essential for problem understanding and formulation, often leading to ill informed causal assumptions, reduced intervention effectiveness and harmful biases. Recent research identifies causal and abductive reasoning as crucial frontiers for AI, and Systems Thinking provides a naturally compatible framework for both. By making Systems Thinking frameworks more accessible and user-friendly, SYMBIOSIS aims to serve as a foundational step to unlock future research into responsible and society-centered AI. Our work underscores the need for ongoing research into AI's capacity to understand essential characteristics of complex adaptive systems paving the way for more socially attuned, effective AI systems.
Related papers
- Advancing Education through Tutoring Systems: A Systematic Literature Review [3.276010440333338]
This study systematically reviews the transformative role of Tutoring Systems, encompassing Intelligent Tutoring Systems (ITS) and Robot Tutoring Systems (RTS)
The findings reveal significant advancements in AI techniques that enhance adaptability, engagement, and learning outcomes.
The study highlights the complementary strengths of ITS and RTS, proposing integrated hybrid solutions to maximize educational benefits.
arXiv Detail & Related papers (2025-03-12T18:47:07Z) - AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
There is a growing proliferation of AI systems designed to mimic people's behavior, work, abilities, likenesses, or humanness.<n>The research, design, deployment, and availability of such AI systems have prompted growing concerns about a wide range of possible legal, ethical, and other social impacts.
arXiv Detail & Related papers (2025-03-04T03:55:38Z) - Lessons from complexity theory for AI governance [1.6122472145662998]
Complexity theory can help illuminate features of AI that pose central challenges for policymakers.<n>We examine how efforts to govern AI are marked by deep uncertainty.<n>We propose a set of complexity-compatible principles concerning the timing and structure of AI governance.
arXiv Detail & Related papers (2025-01-07T07:56:40Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Preparing for Super-Reactivity: Early Fault-Detection in the Development of Exceedingly Complex Reactive Systems [1.6298172960110866]
We introduce the term Super-Reactive Systems to refer to reactive systems whose construction and behavior are complex, constantly changing and evolving.
Finding hidden faults in such systems early in planning and development is critical for human safety, the environment, society and the economy.
We propose an architecture for models and tools to overcome barriers and enable simulation, systematic analysis, and fault detection and handling.
arXiv Detail & Related papers (2024-10-03T16:08:30Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AI is a process in which humans and AI algorithms continuously influence each other.
This paper introduces Coevolution AI as the cornerstone for a new field of study at the intersection between AI and complexity science.
arXiv Detail & Related papers (2023-06-23T18:10:54Z) - Proceedings of the Robust Artificial Intelligence System Assurance
(RAISA) Workshop 2022 [0.0]
The RAISA workshop will focus on research, development and application of robust artificial intelligence (AI) and machine learning (ML) systems.
Rather than studying robustness with respect to particular ML algorithms, our approach will be to explore robustness assurance at the system architecture level.
arXiv Detail & Related papers (2022-02-10T01:15:50Z) - Scholarly AI system diagrams as an access point to mental models [6.233820957059352]
Complex systems, such as Artificial Intelligence (AI) systems, are comprised of many interrelated components.
In order to represent these systems, demonstrating the relations between components is essential.
Diagrams, as "icons of relation", are a prevalent medium for signifying complex systems.
arXiv Detail & Related papers (2021-04-30T07:55:18Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
Reuse is a common system architecture approach that seeks to instantiate a system architecture with existing components.
There is currently no framework that guides the selection of necessary information to assess their portability to operate in a system different than the one for which the component was originally purposed.
We present ongoing work on establishing an interface description template that captures the main information of an AI-enabled component.
arXiv Detail & Related papers (2020-07-13T20:30:26Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.