Uncertainty Quantification From Scaling Laws in Deep Neural Networks
- URL: http://arxiv.org/abs/2503.05938v1
- Date: Fri, 07 Mar 2025 21:15:11 GMT
- Title: Uncertainty Quantification From Scaling Laws in Deep Neural Networks
- Authors: Ibrahim Elsharkawy, Yonatan Kahn, Benjamin Hooberman,
- Abstract summary: Quantifying uncertainty from machine learning analyses is critical to their use in the physical sciences.<n>We compute the mean $mu_mathcalL$ and variance $sigma_mathcalL$ for an ensemble of multi-layer perceptrons.<n>We compare empirically to the results from finite-width networks for three example tasks: MNIST classification, CIFAR classification and calorimeter energy regression.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantifying the uncertainty from machine learning analyses is critical to their use in the physical sciences. In this work we focus on uncertainty inherited from the initialization distribution of neural networks. We compute the mean $\mu_{\mathcal{L}}$ and variance $\sigma_{\mathcal{L}}^2$ of the test loss $\mathcal{L}$ for an ensemble of multi-layer perceptrons (MLPs) with neural tangent kernel (NTK) initialization in the infinite-width limit, and compare empirically to the results from finite-width networks for three example tasks: MNIST classification, CIFAR classification and calorimeter energy regression. We observe scaling laws as a function of training set size $N_\mathcal{D}$ for both $\mu_{\mathcal{L}}$ and $\sigma_{\mathcal{L}}$, but find that the coefficient of variation $\epsilon_{\mathcal{L}} \equiv \sigma_{\mathcal{L}}/\mu_{\mathcal{L}}$ becomes independent of $N_\mathcal{D}$ at both infinite and finite width for sufficiently large $N_\mathcal{D}$. This implies that the coefficient of variation of a finite-width network may be approximated by its infinite-width value, and may in principle be calculable using finite-width perturbation theory.
Related papers
- Learning Networks from Wide-Sense Stationary Stochastic Processes [7.59499154221528]
A key inference problem here is to learn edge connectivity from node outputs (potentials)
We use a Whittle's maximum likelihood estimator (MLE) to learn the support of $Last$ from temporally correlated samples.
We show that the MLE problem is strictly convex, admitting a unique solution.
arXiv Detail & Related papers (2024-12-04T23:14:00Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$<n>We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ with a complexity that is not governed by information exponents.
arXiv Detail & Related papers (2024-06-03T17:56:58Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Effective Minkowski Dimension of Deep Nonparametric Regression: Function
Approximation and Statistical Theories [70.90012822736988]
Existing theories on deep nonparametric regression have shown that when the input data lie on a low-dimensional manifold, deep neural networks can adapt to intrinsic data structures.
This paper introduces a relaxed assumption that input data are concentrated around a subset of $mathbbRd$ denoted by $mathcalS$, and the intrinsic dimension $mathcalS$ can be characterized by a new complexity notation -- effective Minkowski dimension.
arXiv Detail & Related papers (2023-06-26T17:13:31Z) - Wide neural networks: From non-gaussian random fields at initialization
to the NTK geometry of training [0.0]
Recent developments in applications of artificial neural networks with over $n=1014$ parameters make it extremely important to study the large $n$ behaviour of such networks.
Most works studying wide neural networks have focused on the infinite width $n to +infty$ limit of such networks.
In this work we will study their behavior for large, but finite $n$.
arXiv Detail & Related papers (2023-04-06T21:34:13Z) - The Onset of Variance-Limited Behavior for Networks in the Lazy and Rich
Regimes [75.59720049837459]
We study the transition from infinite-width behavior to this variance limited regime as a function of sample size $P$ and network width $N$.
We find that finite-size effects can become relevant for very small datasets on the order of $P* sim sqrtN$ for regression with ReLU networks.
arXiv Detail & Related papers (2022-12-23T04:48:04Z) - Understanding Deep Neural Function Approximation in Reinforcement
Learning via $\epsilon$-Greedy Exploration [53.90873926758026]
This paper provides a theoretical study of deep neural function approximation in reinforcement learning (RL)
We focus on the value based algorithm with the $epsilon$-greedy exploration via deep (and two-layer) neural networks endowed by Besov (and Barron) function spaces.
Our analysis reformulates the temporal difference error in an $L2(mathrmdmu)$-integrable space over a certain averaged measure $mu$, and transforms it to a generalization problem under the non-iid setting.
arXiv Detail & Related papers (2022-09-15T15:42:47Z) - Neural Network Approximation of Continuous Functions in High Dimensions
with Applications to Inverse Problems [6.84380898679299]
Current theory predicts that networks should scale exponentially in the dimension of the problem.
We provide a general method for bounding the complexity required for a neural network to approximate a H"older (or uniformly) continuous function.
arXiv Detail & Related papers (2022-08-28T22:44:07Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
We study how random pruning of the weights affects a neural network's neural kernel (NTK)
In particular, this work establishes an equivalence of the NTKs between a fully-connected neural network and its randomly pruned version.
arXiv Detail & Related papers (2022-03-27T15:22:19Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - The Rate of Convergence of Variation-Constrained Deep Neural Networks [35.393855471751756]
We show that a class of variation-constrained neural networks can achieve near-parametric rate $n-1/2+delta$ for an arbitrarily small constant $delta$.
The result indicates that the neural function space needed for approximating smooth functions may not be as large as what is often perceived.
arXiv Detail & Related papers (2021-06-22T21:28:00Z) - A Neural Scaling Law from the Dimension of the Data Manifold [8.656787568717252]
When data is plentiful, the loss achieved by well-trained neural networks scales as a power-law $L propto N-alpha$ in the number of network parameters $N$.
The scaling law can be explained if neural models are effectively just performing regression on a data manifold of intrinsic dimension $d$.
This simple theory predicts that the scaling exponents $alpha approx 4/d$ for cross-entropy and mean-squared error losses.
arXiv Detail & Related papers (2020-04-22T19:16:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.