Near-Polynomially Competitive Active Logistic Regression
- URL: http://arxiv.org/abs/2503.05981v4
- Date: Fri, 18 Apr 2025 17:55:26 GMT
- Title: Near-Polynomially Competitive Active Logistic Regression
- Authors: Yihan Zhou, Eric Price, Trung Nguyen,
- Abstract summary: It is well known that active learning can require exponentially fewer label queries compared to passive learning.<n>We present the first algorithm that is competitive with the optimal algorithm on every input.<n>Our algorithm is based on efficient sampling and can be extended to learn more general class of functions.
- Score: 6.600655187282174
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We address the problem of active logistic regression in the realizable setting. It is well known that active learning can require exponentially fewer label queries compared to passive learning, in some cases using $\log \frac{1}{\eps}$ rather than $\poly(1/\eps)$ labels to get error $\eps$ larger than the optimum. We present the first algorithm that is polynomially competitive with the optimal algorithm on every input instance, up to factors polylogarithmic in the error and domain size. In particular, if any algorithm achieves label complexity polylogarithmic in $\eps$, so does ours. Our algorithm is based on efficient sampling and can be extended to learn more general class of functions. We further support our theoretical results with experiments demonstrating performance gains for logistic regression compared to existing active learning algorithms.
Related papers
- A Competitive Algorithm for Agnostic Active Learning [5.4579367210379335]
Most popular algorithms for active learning express their performance in terms of a parameter called the disagreement coefficient.
We get an algorithm that is competitive with the optimal algorithm for any binary hypothesis class $H$ and distribution $D_X$ over $X$.
It is NP-hard to do better than our algorithm's $O(log |H|)$ overhead in general.
arXiv Detail & Related papers (2023-10-28T19:01:16Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Provably Efficient Reinforcement Learning via Surprise Bound [66.15308700413814]
We propose a provably efficient reinforcement learning algorithm (both computationally and statistically) with general value function approximations.
Our algorithm achieves reasonable regret bounds when applied to both the linear setting and the sparse high-dimensional linear setting.
arXiv Detail & Related papers (2023-02-22T20:21:25Z) - Turing-Universal Learners with Optimal Scaling Laws [2.7485183218472016]
We observe the existence of a "universal learner" algorithm, which achieves the best possible distribution-dependent rate among all learning algorithms.
The construction itself is a simple extension of Levin's universal search (Levin, 1973)
arXiv Detail & Related papers (2021-11-09T18:44:35Z) - Mixability made efficient: Fast online multiclass logistic regression [68.8204255655161]
We show that mixability can be a powerful tool to obtain algorithms with optimal regret.
The resulting methods often suffer from high computational complexity which has reduced their practical applicability.
arXiv Detail & Related papers (2021-10-08T08:22:05Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
In this paper, we establish an efficient online sub-sampling framework that measures the information gain of data points collected by an RL algorithm.
For a value-based method with complexity-bounded function class, we show that the policy only needs to be updated for $proptooperatornamepolylog(K)$ times.
In contrast to existing approaches that update the policy for at least $Omega(K)$ times, our approach drastically reduces the number of optimization calls in solving for a policy.
arXiv Detail & Related papers (2021-06-14T07:36:25Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Online Model Selection for Reinforcement Learning with Function
Approximation [50.008542459050155]
We present a meta-algorithm that adapts to the optimal complexity with $tildeO(L5/6 T2/3)$ regret.
We also show that the meta-algorithm automatically admits significantly improved instance-dependent regret bounds.
arXiv Detail & Related papers (2020-11-19T10:00:54Z) - Algorithms and SQ Lower Bounds for PAC Learning One-Hidden-Layer ReLU
Networks [48.32532049640782]
We study the problem of learning one-hidden-layer ReLU networks with $k$ hidden units on $mathbbRd$ under Gaussian marginals.
For the case of positive coefficients, we give the first-time algorithm for this learning problem for $k$ up to $tildeOOmega(sqrtlog d)$.
arXiv Detail & Related papers (2020-06-22T17:53:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.