Rank-R1: Enhancing Reasoning in LLM-based Document Rerankers via Reinforcement Learning
- URL: http://arxiv.org/abs/2503.06034v1
- Date: Sat, 08 Mar 2025 03:14:26 GMT
- Title: Rank-R1: Enhancing Reasoning in LLM-based Document Rerankers via Reinforcement Learning
- Authors: Shengyao Zhuang, Xueguang Ma, Bevan Koopman, Jimmy Lin, Guido Zuccon,
- Abstract summary: We introduce Rank-R1, a novel LLM-based reranker that performs reasoning over both the user query and candidate documents before performing the ranking task.<n>Our experiments on the TREC DL and BRIGHT datasets show that Rank-R1 is highly effective, especially for complex queries.
- Score: 76.50690734636477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce Rank-R1, a novel LLM-based reranker that performs reasoning over both the user query and candidate documents before performing the ranking task. Existing document reranking methods based on large language models (LLMs) typically rely on prompting or fine-tuning LLMs to order or label candidate documents according to their relevance to a query. For Rank-R1, we use a reinforcement learning algorithm along with only a small set of relevance labels (without any reasoning supervision) to enhance the reasoning ability of LLM-based rerankers. Our hypothesis is that adding reasoning capabilities to the rerankers can improve their relevance assessement and ranking capabilities. Our experiments on the TREC DL and BRIGHT datasets show that Rank-R1 is highly effective, especially for complex queries. In particular, we find that Rank-R1 achieves effectiveness on in-domain datasets at par with that of supervised fine-tuning methods, but utilizing only 18\% of the training data used by the fine-tuning methods. We also find that the model largely outperforms zero-shot and supervised fine-tuning when applied to out-of-domain datasets featuring complex queries, especially when a 14B-size model is used. Finally, we qualitatively observe that Rank-R1's reasoning process improves the explainability of the ranking results, opening new opportunities for search engine results presentation and fruition.
Related papers
- Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning [50.419872452397684]
Search-R1 is an extension of reinforcement learning for reasoning frameworks.
It generates search queries during step-by-step reasoning with real-time retrieval.
It improves performance by 41% (Qwen2.5-7B) and 20% (Qwen2.5-3B) over various RAG baselines.
arXiv Detail & Related papers (2025-03-12T16:26:39Z) - Rank1: Test-Time Compute for Reranking in Information Retrieval [45.356614696154075]
Rank1 is the first reranking model trained to take advantage of test-time compute.<n>We gather and open-source a dataset of more than 600,000 examples of R1 reasoning traces from queries and passages in MS MARCO.
arXiv Detail & Related papers (2025-02-25T18:14:06Z) - RRADistill: Distilling LLMs' Passage Ranking Ability for Long-Tail Queries Document Re-Ranking on a Search Engine [2.0379810233726126]
Large Language Models (LLMs) excel at understanding the semantic relationships between queries and documents.
These queries are challenging for feedback-based rankings due to sparse user engagement and limited feedback.
We propose an efficient label generation pipeline and novel sLLM training methods for both encoder and decoder models.
arXiv Detail & Related papers (2024-10-08T11:28:06Z) - FIRST: Faster Improved Listwise Reranking with Single Token Decoding [56.727761901751194]
First, we introduce FIRST, a novel listwise LLM reranking approach leveraging the output logits of the first generated identifier to directly obtain a ranked ordering of the candidates.
Empirical results demonstrate that FIRST accelerates inference by 50% while maintaining a robust ranking performance with gains across the BEIR benchmark.
Our results show that LLM rerankers can provide a stronger distillation signal compared to cross-encoders, yielding substantial improvements in retriever recall after relevance feedback.
arXiv Detail & Related papers (2024-06-21T21:27:50Z) - Instruction Distillation Makes Large Language Models Efficient Zero-shot
Rankers [56.12593882838412]
We introduce a novel instruction distillation method to rank documents.
We first rank documents using the effective pairwise approach with complex instructions, and then distill the teacher predictions to the pointwise approach with simpler instructions.
Our approach surpasses the performance of existing supervised methods like monoT5 and is on par with the state-of-the-art zero-shot methods.
arXiv Detail & Related papers (2023-11-02T19:16:21Z) - Open-source Large Language Models are Strong Zero-shot Query Likelihood
Models for Document Ranking [36.90911173089409]
Large language models (LLMs) have emerged as effective Query Likelihood Models (QLMs)
This paper focuses on investigating the genuine zero-shot ranking effectiveness of recent LLMs.
We introduce a novel state-of-the-art ranking system that integrates LLM-based QLMs with a hybrid zero-shot retriever.
arXiv Detail & Related papers (2023-10-20T02:54:42Z) - Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting [65.00288634420812]
Pairwise Ranking Prompting (PRP) is a technique to significantly reduce the burden on Large Language Models (LLMs)
Our results are the first in the literature to achieve state-of-the-art ranking performance on standard benchmarks using moderate-sized open-sourced LLMs.
arXiv Detail & Related papers (2023-06-30T11:32:25Z) - Zero-Shot Listwise Document Reranking with a Large Language Model [58.64141622176841]
We propose Listwise Reranker with a Large Language Model (LRL), which achieves strong reranking effectiveness without using any task-specific training data.
Experiments on three TREC web search datasets demonstrate that LRL not only outperforms zero-shot pointwise methods when reranking first-stage retrieval results, but can also act as a final-stage reranker.
arXiv Detail & Related papers (2023-05-03T14:45:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.