Feature Fusion Attention Network with CycleGAN for Image Dehazing, De-Snowing and De-Raining
- URL: http://arxiv.org/abs/2503.06107v1
- Date: Sat, 08 Mar 2025 07:18:42 GMT
- Title: Feature Fusion Attention Network with CycleGAN for Image Dehazing, De-Snowing and De-Raining
- Authors: Akshat Jain,
- Abstract summary: We present a novel approach to image dehazing by combining Feature Fusion Attention (FFA) networks with CycleGAN architecture.<n>Our method leverages both supervised and unsupervised learning techniques to effectively remove haze from images while preserving crucial image details.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents a novel approach to image dehazing by combining Feature Fusion Attention (FFA) networks with CycleGAN architecture. Our method leverages both supervised and unsupervised learning techniques to effectively remove haze from images while preserving crucial image details. The proposed hybrid architecture demonstrates significant improvements in image quality metrics, achieving superior PSNR and SSIM scores compared to traditional dehazing methods. Through extensive experimentation on the RESIDE and DenseHaze CVPR 2019 dataset, we show that our approach effectively handles both synthetic and real-world hazy images. CycleGAN handles the unpaired nature of hazy and clean images effectively, enabling the model to learn mappings even without paired data.
Related papers
- DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Restoring Vision in Hazy Weather with Hierarchical Contrastive Learning [53.85892601302974]
We propose an effective image dehazing method named Hierarchical Contrastive Dehazing (HCD)
HCD consists of a hierarchical dehazing network (HDN) and a novel hierarchical contrastive loss (HCL)
arXiv Detail & Related papers (2022-12-22T03:57:06Z) - Dual-Scale Single Image Dehazing Via Neural Augmentation [29.019279446792623]
A novel single image dehazing algorithm is introduced by combining model-based and data-driven approaches.
Results indicate that the proposed algorithm can remove haze well from real-world and synthetic hazy images.
arXiv Detail & Related papers (2022-09-13T11:56:03Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
We describe an approach for supervising deep networks that are based on CycleGAN.
We introduce new losses for training CycleGAN that lead to more effective training, resulting in high-quality reconstructions.
We demonstrate that the proposed method can be effectively applied to different restoration tasks like de-raining, de-hazing and de-snowing.
arXiv Detail & Related papers (2022-04-23T01:30:47Z) - From Synthetic to Real: Image Dehazing Collaborating with Unlabeled Real
Data [58.50411487497146]
We propose a novel image dehazing framework collaborating with unlabeled real data.
First, we develop a disentangled image dehazing network (DID-Net), which disentangles the feature representations into three component maps.
Then a disentangled-consistency mean-teacher network (DMT-Net) is employed to collaborate unlabeled real data for boosting single image dehazing.
arXiv Detail & Related papers (2021-08-06T04:00:28Z) - Contrastive Learning for Compact Single Image Dehazing [41.83007400559068]
We propose a novel contrastive regularization (CR) built upon contrastive learning to exploit both the information of hazy images and clear images as negative and positive samples.
CR ensures that the restored image is pulled to closer to the clear image and pushed to far away from the hazy image in the representation space.
Considering trade-off between performance and memory storage, we develop a compact dehazing network based on autoencoder-like framework.
arXiv Detail & Related papers (2021-04-19T14:56:21Z) - Identity-Aware CycleGAN for Face Photo-Sketch Synthesis and Recognition [61.87842307164351]
We first propose an Identity-Aware CycleGAN (IACycleGAN) model that applies a new perceptual loss to supervise the image generation network.
It improves CycleGAN on photo-sketch synthesis by paying more attention to the synthesis of key facial regions, such as eyes and nose.
We develop a mutual optimization procedure between the synthesis model and the recognition model, which iteratively synthesizes better images by IACycleGAN.
arXiv Detail & Related papers (2021-03-30T01:30:08Z) - FD-GAN: Generative Adversarial Networks with Fusion-discriminator for
Single Image Dehazing [48.65974971543703]
We propose a fully end-to-end Generative Adversarial Networks with Fusion-discriminator (FD-GAN) for image dehazing.
Our model can generator more natural and realistic dehazed images with less color distortion and fewer artifacts.
Experiments have shown that our method reaches state-of-the-art performance on both public synthetic datasets and real-world images.
arXiv Detail & Related papers (2020-01-20T04:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.