KnowLogic: A Benchmark for Commonsense Reasoning via Knowledge-Driven Data Synthesis
- URL: http://arxiv.org/abs/2503.06218v1
- Date: Sat, 08 Mar 2025 13:40:10 GMT
- Title: KnowLogic: A Benchmark for Commonsense Reasoning via Knowledge-Driven Data Synthesis
- Authors: Weidong Zhan, Yue Wang, Nan Hu, Liming Xiao, Jingyuan Ma, Yuhang Qin, Zheng Li, Yixin Yang, Sirui Deng, Jinkun Ding, Wenhan Ma, Rui Li, Weilin Luo, Qun Liu, Zhifang Sui,
- Abstract summary: We introduce KnowLogic, a benchmark generated through a knowledge-driven synthetic data strategy.<n>KnowLogic integrates diverse commonsense knowledge, plausible scenarios, and various types of logical reasoning.<n>Our benchmark consists of 3,000 bilingual (Chinese and English) questions across various domains.
- Score: 33.72114830484246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current evaluations of commonsense reasoning in LLMs are hindered by the scarcity of natural language corpora with structured annotations for reasoning tasks. To address this, we introduce KnowLogic, a benchmark generated through a knowledge-driven synthetic data strategy. KnowLogic integrates diverse commonsense knowledge, plausible scenarios, and various types of logical reasoning. One of the key advantages of KnowLogic is its adjustable difficulty levels, allowing for flexible control over question complexity. It also includes fine-grained labels for in-depth evaluation of LLMs' reasoning abilities across multiple dimensions. Our benchmark consists of 3,000 bilingual (Chinese and English) questions across various domains, and presents significant challenges for current LLMs, with the highest-performing model achieving only 69.57\%. Our analysis highlights common errors, such as misunderstandings of low-frequency commonsense, logical inconsistencies, and overthinking. This approach, along with our benchmark, provides a valuable tool for assessing and enhancing LLMs' commonsense reasoning capabilities and can be applied to a wide range of knowledge domains.
Related papers
- Towards Quantifying Commonsense Reasoning with Mechanistic Insights [7.124379028448955]
We argue that a proxy of commonsense reasoning can be maintained as a graphical structure.
We create an annotation scheme for capturing this implicit knowledge in the form of a graphical structure for 37 daily human activities.
We find that the created resource can be used to frame an enormous number of commonsense queries.
arXiv Detail & Related papers (2025-04-14T10:21:59Z) - CLR-Fact: Evaluating the Complex Logical Reasoning Capability of Large Language Models over Factual Knowledge [44.59258397967782]
Large language models (LLMs) have demonstrated impressive capabilities across various natural language processing tasks.
We present a systematic evaluation of state-of-the-art LLMs' complex logical reasoning abilities.
We find that LLMs excel at reasoning over general world knowledge but face significant challenges with specialized domain-specific knowledge.
arXiv Detail & Related papers (2024-07-30T05:40:32Z) - RUPBench: Benchmarking Reasoning Under Perturbations for Robustness Evaluation in Large Language Models [12.112914393948415]
We present RUPBench, a benchmark designed to evaluate large language models (LLMs) across diverse reasoning tasks.
Our benchmark incorporates 15 reasoning datasets, categorized into commonsense, arithmetic, logical, and knowledge-intensive reasoning.
By examining the performance of state-of-the-art LLMs such as GPT-4o, Llama3, Phi-3, and Gemma on both original and perturbed datasets, we provide a detailed analysis of their robustness and error patterns.
arXiv Detail & Related papers (2024-06-16T17:26:44Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
We introduce CLAMBER, a benchmark for evaluating large language models (LLMs)
Building upon the taxonomy, we construct 12K high-quality data to assess the strengths, weaknesses, and potential risks of various off-the-shelf LLMs.
Our findings indicate the limited practical utility of current LLMs in identifying and clarifying ambiguous user queries.
arXiv Detail & Related papers (2024-05-20T14:34:01Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - CausalBench: A Comprehensive Benchmark for Causal Learning Capability of LLMs [27.362012903540492]
The ability to understand causality significantly impacts the competence of large language models (LLMs) in output explanation and counterfactual reasoning.
The ability to understand causality significantly impacts the competence of large language models (LLMs) in output explanation and counterfactual reasoning.
arXiv Detail & Related papers (2024-04-09T14:40:08Z) - Untangle the KNOT: Interweaving Conflicting Knowledge and Reasoning Skills in Large Language Models [51.72963030032491]
Knowledge documents for large language models (LLMs) may conflict with the memory of LLMs due to outdated or incorrect knowledge.
We construct a new dataset, dubbed KNOT, for knowledge conflict resolution examination in the form of question answering.
arXiv Detail & Related papers (2024-04-04T16:40:11Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - Improving Large Language Models in Event Relation Logical Prediction [33.88499005859982]
Event relation extraction is a challenging task that demands thorough semantic understanding and rigorous logical reasoning.
In this paper, we conduct an in-depth investigation to systematically explore the capability of LLMs in understanding and applying event relation logic.
Our study reveals that LLMs are not logically consistent reasoners, which results in their suboptimal performance on tasks that need rigorous reasoning.
arXiv Detail & Related papers (2023-10-13T14:53:06Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.